环境配置05——conda创建虚拟环境指定版本torch与python

版本选择:

  • python版本3.11.8
  • torch版本2.1.2

1.创建环境

conda create -n t212p311 python==3.11.8

2.下载torch

pytorch-wheels-cu121安装包下载_开源镜像站-阿里云

3. 安装torch

 进入虚拟环境

activate t212p311

进入torch安装包所在目录,安装torch

pip install ./"torch-2.1.2+cu121-cp311-cp311-win_amd64.whl"

4.检查torch是否成功配置

conda list

### PyTorch CPU 版本安装指南 对于 Python 3.7 和仅需支持 CPU 的环境,推荐通过 `conda` 或者 `pip` 来安装 PyTorch 及其依赖项。 #### 使用 Conda 安装 PyTorch CPU 版本 Conda 是 Anaconda 发行版自带的一个包管理工具,可以方便地创建虚拟环境并安装特定配置下的软件包。为了安装适合于 Python 3.7 并且只针对 CPU 的 PyTorch 版本,在命令行输入以下指令: ```bash conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` 这条命令会自动处理所有的依赖关系,并确保所安装的是与 Python 3.7 兼容的最新稳定版本[^1]。 #### 利用 Pip 安装 PyTorch CPU 版本 如果偏好 pip 而不是 conda,则可以通过访问官方提供的预编译二进制文件来获取对应的.whl 文件。具体操作如下: 前往 [PyTorch官方网站](https://pytorch.org/get-started/locally/) ,按照页面上的指示选择操作系统、包管理器(这里选 pip)、Python 版本 (3.7),以及 CUDA 版本(None 表示不需要 GPU 支持)。之后网页将会给出相应的安装命令,通常类似于这样: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu ``` 此方式同样能够保证安装过程顺利进行,并且保持与其他组件的良好协作[^2]。 #### 验证安装成功与否 无论采用哪种方式进行安装,完成之后都应该验证是否正确无误。可以在 Python 解释器内执行下列代码片段来进行简单的检测: ```python import torch print(torch.__version__) print(torch.cuda.is_available()) ``` 上述脚本应该返回 PyTorch版本号,并指出当前环境中并没有可用的 CUDA 设备——这正是预期的结果,因为已经选择了不带 GPU 加速功能的纯 CPU 构建[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值