深度学习之 人脸生成 BEGAN TensorFlow 实现


 本文介绍 BEGAN (BoundaryEquilibriumGenerative AdversarialNetworks),边界平衡生成对抗网络程

 参考资料
 论文https://arxiv.org/pdf/1703.10717.pdf

1、简述


生成对抗网络 (GAN)是一类用于学习数据分布的方法并实现一个从中抽样的模型。GAN围绕两个功能构建:生成器G(z),它将样本

z从随机均匀分布映射到数据分布和判别器D(x)确定样本x是否属于数据分布。基于博弈论原理,通过交替训练D和G来共同学习生成器和

判别器。

 GAN可以生成非常逼真的图像,比使用像素损失的自编码器生成的图像更锐利清晰。然而,GAN仍然面临许多未解决的困难:

 1、 很难训练

 2、 选择正确的超参数至关重要。

 3、 控制生成样本的图像多样性是困难的。

 4、 平衡判别器和生成器的收敛是一个挑战:在训练初始的时候判别器极易获胜。 GAN容易遭受模式崩溃,即这个失败的模型只

学习一张图像。如批量鉴别和排斥正则化器这些启发式正则化器,以不同程度的方式成功缓解这些问题。


 BEGAN,提出了以下改进:

 1、 一个简单而鲁棒的GAN架构,使用标准的训练步骤实现了快速且稳定的收敛

 2、 一个均衡概念,用于平衡判别器与生成器之间的竞争力。

 3、 一种控制图像多样性和视觉质量之间权衡的新方法。

 4、 一种近似度量的收敛方法。 Wasserstein GAN (WGAN),已标准的W GAN有些诧异。

 下面会看到D和G,这么简单的网络结构,能达到非常好的效果

2、优化目标

2.1 提出的方法

 EBGAN中首次提出使用自编码器作为判别器。EBGAN的改变在discriminator上。把D看作是一个energy function,对real image

赋予低能量,fake image赋予高能量
在这里插入图片描述
 如EBGAN中提出使用自编码器作为判别器, BEGAN使用自编码器作为判别器。虽然经典GANs尝试直接匹配数据分布,但文中的

方法旨在从Wasserstein距离衍生而来的损失分布去匹配自编码器的损失分布。这里使用经典的GAN模型目标增加一个平衡项来平衡判别

器和生成器。文中的方法与经典GAN的方法相比,它具有更简单的训练过程并使用更简单的神经网络架构。

2.2 Wasserstein距离下限为自动编码器

 BEGAN希望研究重构误差分布,而不是重构样本分布。首先介绍自编码器的损失,然

  • 1
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值