也谈MCMC方法与Gibbs抽样

个人博客传送门:点击打开链接

MCMC,即传说中的Markov Chain Mento Carlo方法。其主要用于统计推理中进行模拟抽样,尤其在贝叶斯推理中有着非常广泛的应用。如算法模型的后验参数估计问题,很多情况下其后验概率分布没有确定性的解析解,或者解析解计算起来非常复杂,便可以通过MCMC模拟抽样,根据大数定律,参数的期望便可以通过对抽样样本的求均值来评估。

山人第一次见到MCMC兄还是在研究僧阶段,那时候以Latent Direichlet Allocation(LDA)为代表的Blei先生的一系列主题模型算法还很火,甚至你还能看见Andrew Ng的身影。于是导师欣然的把其另一篇层次主题模型的论文,Hierarchical LDA(hLDA)甩给我们,拍着我们的肩膀,语重心长的说,好好干,会很有前景的。于是我的MCMC初体验是这样的: John-nashWhat the hell? 于是直到现在还对MCMC念念不忘。好吧,是耿耿于怀。最近又看见Quora上有人讨论MCMC和Gibbs抽样,再看时,发现虽然有一两年未看,脑部神经元还是不停的工作,现在理解起来竟然清晰许多。 MCMC是Markov Chain和Mento Carlo两个概念的组合,我们不妨分而治之,先看看各自的含义。

I-Markov Chain

即马尔科夫链,这哥么大家肯定不会陌生,还记得Hidden Markov Model么(Baum-Welch算法会推导了么:( )马尔科夫链的一个重要属性就是无记忆性。其表示的随机过程,在一个状态空间里游走且未来的状态只与当前的状态有关,而与之前的状态均无关。这种无记忆性便称之为马尔科夫性。

p(xt+1|xt,xt1...x1)=p(xt+1|xt)(1)
马尔科夫链是一种随机过程,其定义有主要有两点,即状态空间和转移概率矩阵。如下图所示,一个简单的马尔科夫链随机过程,包含三个状态:
Markov State Transmition
其状态之间的转移概率矩阵如下:  Transition Matrix
假设在状态 Πi 时,你在Bull Market 状态,且当前概率分布为 [0,1,0] 。在下一个 Πi+1 状态时的概率分布为
Πi+1=Πi.P(2)
则结果为 Πi+1=[.15.8.05] 。如此类推,下一个状态分布则为:
Πi+1=Πi.P2(3)
如此下去,最终发现我们会得到一个稳定的状态,此时
Π=Π.P(4)
即状态分布变得稳定(Stationary),不会再随着状态转移概率的变化而变化。且我们发现,即使我们的初始状态分布矩阵不是 [0,1,0] 而是另外一个值,如 [0.4,0.3,0.3] 时,最终经过多次转移,也会达到最终的稳定(Stationary)状态,且稳定状态的分布是一致的,即最终的Stationary状态与初始分布矩阵没有关系,只与状态转移矩阵有关。那末是不是所有的状态转移矩阵都能最终达到稳定状态呢?答案自然不是,还是需要马氏链定理的保证,简单说就是
如果一个非周期马氏链具有概率转移矩阵 P ,且它的任何两个状态都是联通的,那么如果
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值