博客原文传送门:点击打开链接
浅谈L0,L1,L2范数及其应用
在线性代数,函数分析等数学分支中,范数(Norm)是一个函数,其赋予某个向量空间(或矩阵)中的每个向量以长度或大小。对于零向量,另其长度为零。直观的说,向量或矩阵的范数越大,则我们可以说这个向量或矩阵也就越大。有时范数有很多更为常见的叫法,如绝对值其实便是一维向量空间中实数或复数的范数,而Euclidean距离也是一种范数。
范数的一般化定义:设 p≥1 的实数,p-norm定义为:
||x||p:=(∑i=1n∣∣xi∣∣p)1p(1)
下图给出了一个Lp球的形状随着P的减少的可视化图。
1- L0 范数
虽然L0严格说不属于范数,我们可以采用等式 1 来给出l0-norm得定义:
||x||0:=0∑i=0nx0i‾‾‾‾‾‾⎷(2)
||x||0=#(i)withxi≠0(3)
2- L1 范数
对于向量X,其L1范数的定义如下:
||x||1:=∑i=1n∣∣xi∣∣