浅谈L0,L1,L2范数及其应用

本文介绍了L0、L1和L2范数的概念,强调它们在机器学习中的作用,特别是正则化、贝叶斯先验和特征选择。L0范数用于理想化的特征选择,L1范数作为其凸近似在实际应用中广泛,而L2范数因平滑性常用于模型预测。L1正则化促进特征稀疏性,L2正则化则避免过拟合。
摘要由CSDN通过智能技术生成

博客原文传送门:点击打开链接


浅谈L0,L1,L2范数及其应用

在线性代数,函数分析等数学分支中,范数(Norm)是一个函数,其赋予某个向量空间(或矩阵)中的每个向量以长度或大小。对于零向量,另其长度为零。直观的说,向量或矩阵的范数越大,则我们可以说这个向量或矩阵也就越大。有时范数有很多更为常见的叫法,如绝对值其实便是一维向量空间中实数或复数的范数,而Euclidean距离也是一种范数。

范数的一般化定义:设 p1 的实数,p-norm定义为:

||x||p:=(i=1nxip)1p(1)
此处,当 p=1 时,我们称之为taxicab Norm,也叫Manhattan Norm。其来源是曼哈顿的出租车司机在四四方方的曼哈顿街道中从一点到另一点所需要走过的距离。也即我们所要讨论的l1范数。其表示某个向量中所有元素绝对值的和。 而当 p=2 时,则是我们最为常见的Euclidean norm。也称为Euclidean distance。也即我们要讨论的l2范数。 而当 p=0 时,因其不再满足三角不等性,严格的说此时p已不算是范数了,但很多人仍然称之为l0范数。 这三个范数有很多非常有意思的特征,尤其是在机器学习中的正则化(Regularization)以及稀疏编码(Sparse Coding)有非常有趣的应用。
下图给出了一个Lp球的形状随着P的减少的可视化图。 lp ball

1- L0 范数

虽然L0严格说不属于范数,我们可以采用等式 1 来给出l0-norm得定义:

||x||0:=0i=0nx0i(2)
上面的公式仍然让人不是很明白,0的指数和平方根严格意义上是受限条件下才成立的。因此在实际应用中,多数人给出下面的替代定义:
||x||0=#(i)withxi0(3)
其表示向量中所有非零元素的个数。正是L0范数的这个属性,使得其非常适合机器学习中 稀疏编码 ,特征选择的应用。通过最小化L0范数,来寻找最少最优的稀疏特征项。但不幸的是,L0范数的最小化问题在实际应用中是NP难问题。因此很多情况下,L0优化问题就会被relaxe为更高维度的范数问题,如L1范数,L2范数最小化问题。

2- L1 范数

对于向量X,其L1范数的定义如下:

||x||1:=i=1nxi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值