Divide two integers without using multiplication, division and mod operator.
思路:1.先将被除数和除数转化为long的非负数,注意一定要为long,因为Integer.MIN_VALUE的绝对值超出了Integer的范围。
2.常理:任何正整数num都可以表示为num=2^a+2^b+2^c+…+2^n,故可以采用2^a+2^b+2^c+…+2^n来表示商,即dividend=divisor*(2^a+2^b+2^c+…+2^n),(a,b,c,….m互不相等,且最大为31,最小为0)。而商的最大值为Integer.MIN_VALUE的绝对值,商最多有32个2的指数次相加,故时间复杂度为常数。
3.divisor*2^a用计算机表示为divisor<
class Solution {
public:
long long internalDivide(unsigned long long dividend, unsigned long long divisor) {
if (dividend < divisor) {
return 0;
}
long long result = 1;
unsigned long long tmp = divisor, left;
while (tmp <= dividend) {
left = dividend - tmp;
tmp <<= 1;
if (tmp > dividend) {
break;
}
else {
result <<= 1;
}
}
return result + internalDivide(left, divisor);
}
int divide(int dividend, int divisor) {
unsigned long long _dividend = abs((long long)dividend),
_divisor = abs((long long)divisor);
bool positive = ((dividend >= 0) && (divisor > 0)) || ((dividend <= 0) && (divisor < 0));
return positive ? internalDivide(_dividend, _divisor) : (-1) * internalDivide(_dividend, _divisor);
}
};
[java] view plaincopy在CODE上查看代码片派生到我的代码片
public class Solution {
public int divide(int dividend, int divisor) {
boolean positive = true;
if((dividend>0&&divisor<0)||(dividend<0&&divisor>0))
positive = false;
long did=dividend>=0?(long)dividend:-(long)dividend;
long dis=divisor>=0?(long)divisor:-(long)divisor;
long quotients = positiveDivide(did, dis);
if (!positive)
return (int)-quotients;
return (int)quotients;
}
public long positiveDivide(long did, long dis) {
long[] array = new long[32];
long sum = 0;
int i = 1;
long quotients = 0;
if(dis==1) return did;//为了避免-did=Integer.MIN_VALUE,而dis=1,出现问题
for (array[0]=dis; i < 32 && array[i - 1] <= did; i++)
array[i] = array[i - 1] << 1;
for (i = i - 2; i >= 0; i--) {
if (sum <= did - array[i]) {
sum += array[i];
quotients += 1 << i;
}
}
return quotients;
}
}
优化版,减小内存的消耗,不申请动态数组
[java] view plaincopy在CODE上查看代码片派生到我的代码片
public class Solution {
public int divide(int dividend, int divisor) {
boolean positive = true;
if((dividend>0&&divisor<0)||(dividend<0&&divisor>0))
positive = false;
long did=dividend>=0?(long)dividend:-(long)dividend;
long dis=divisor>=0?(long)divisor:-(long)divisor;
long quotients = positiveDivide(did, dis);
if (!positive)
return (int)-quotients;
return (int)quotients;
}
public long positiveDivide(long did, long dis) {
long sum = 0;
long quotients = 0;
if(dis==1) return did;//为了避免-did=Integer.MIN_VALUE,而dis=1,出现问题
//sum从divisor*2^31的开始加起,不能加则试试加上divisor*2^30,
//若不能则试试divisor*2^29,依此类推
for (int i = 31; i >= 0; i--) {
long temp=dis<<i;//该式为divisor*2^a
/* sum+temp <= dividend , 则说明dividend大于divisor*(2^m+...+2^i),m最大为31。
那么2的i次方这个结果可以保留。*/
if (sum <= did - temp) {
sum += temp;
quotients += 1 << i;//2^i
}
}
return quotients;
}
}