斐波那契数列 寻求mod n 循环节 模板

博客主要讨论斐波那契数列中,数列模n后的循环节现象。通过暴力计算方法,探寻斐波那契数列在模n运算下的周期性规律。
摘要由CSDN通过智能技术生成

原博主

注意前两项是0 1 还是 1 1

#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h>

using namespace std;
typedef unsigned long long LL;

const int M = 2;

struct Matrix
{
    LL m[M][M];
};

Matrix A;
Matrix I = {1,0,0,1};

Matrix multi(Matrix a,Matrix b,LL MOD)
{
    Matrix c;
    for(int i=0; i<M; i++)
    {
        for(int j=0; j<M; j++)
        {
            c.m[i][j] = 0;
            for(int k=0; k<M; k++)
                c.m[i][j] = (c.m[i][j]%MOD + (a.m[i][k]%MOD)*(b.m[k][j]%MOD)%MOD)%MOD;
            c.m[i][j] %= MOD;
        }
    }
    return c;
}

Matrix power(Matrix a,LL k,LL MOD)
{
    Matrix ans = I,p = a;
    while(k)
    {
        if(k & 1)
        {
            ans = multi(ans,p,MOD);
      
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值