斐波那契循环节

Source: here

斐波那契数列:
f i = f i − 1 + f i − 2 , i ≥ 2 f 0 = 0 , f 1 = 1 f i = ϕ i − φ i 5 f_i=f_{i-1}+f_{i-2}, i\ge 2\\f_0=0,f_1=1\\f_i=\frac{\phi^i-\varphi^i}{\sqrt 5} fi=fi1+fi2,i2f0=0,f1=1fi=5 ϕiφi
其中 ϕ , φ \phi,\varphi ϕ,φ 为两个特征根, ϕ = 5 + 1 2 , φ = 5 − 1 2 \phi =\frac{\sqrt 5+1}{2},\varphi = \frac{\sqrt 5-1}{2} ϕ=25 +1,φ=25 1

m m m 为斐波那契数列在模 p p p 意义下的循环节
接下来我们将会找到在 p p p p k p^k pk,以及合数情况的循环节


引理 1:

  • a ≡ 1 m o d    p a\equiv 1 \mod p a1modp,则 a p k ≡ 1 m o d    p k + 1 a^{p^k}\equiv 1\mod p^{k+1} apk1modpk+1
    归纳证明,先证 k = 1 k=1 k=1
    a p ≡ ( 1 + t p ) p ≡ ∑ i = 0 p ( t p ) i ( p i ) ≡ 1 + t p 2 ≡ 1 m o d    p 2 a^{p}\equiv(1+tp)^{p}\equiv\sum_{i=0}^p(tp)^i\binom{p}{i}\equiv1+tp^2\equiv 1\mod p^2 ap(1+tp)pi=0p(tp)i(ip)1+tp21modp2
    设在 k − 1 k-1 k1 时成立,证在 k k k 时亦成立:
    a p k = ( 1 + t p k ) p ≡ ∑ i = 0 p ( t p k ) i ( p i ) ≡ 1 + t p k + 1 ≡ 1 m o d    p k + 1 a^{p^{k}}=(1+tp^{k})^p\equiv \sum_{i=0}^p(tp^{k})^i\binom{p}{i}\equiv1+tp^{k+1}\equiv 1\mod p^{k+1} apk=(1+tpk)pi=0p(tpk)i(ip)1+tpk+11modpk+1

推论 1:

  • m m m 为模 p p p 意义下的循环节,则
    ϕ m p k − 1 ≡ φ m p k − 1 ≡ 1 m o d    p k \phi^{mp^{k-1}}\equiv\varphi^{mp^{k-1}}\equiv 1\mod p^k ϕmpk1φmpk11modpk
    首先有 ϕ m − φ m 5 ≡ 0 m o d    p \frac{\phi^m - \varphi^m}{\sqrt 5}\equiv 0\mod p 5 ϕmφm0modp,则 ϕ m ≡ φ m m o d    p \phi^m\equiv \varphi^m\mod p ϕmφmmodp
    ϕ m + 1 − φ m + 1 5 − ϕ − φ 5 ≡ ϕ ( ϕ m − 1 ) − φ ( ϕ m − 1 ) 5 ≡ 0 m o d    p \frac{\phi^{m+1}-\varphi^{m+1}}{\sqrt 5}-\frac{\phi -\varphi}{\sqrt 5}\equiv\frac{\phi(\phi^m-1)-\varphi(\phi^m-1)}{\sqrt 5}\equiv 0\mod p 5 ϕm+1φm+15 ϕφ5 ϕ(ϕm1)φ(ϕm1)0modp
    ϕ m ≡ φ m ≡ 1 m o d    p \phi^m\equiv \varphi^m\equiv 1\mod p ϕmφm1modp
    所以有 ϕ m p k − 1 ≡ φ m p k − 1 ≡ 1 m o d    p k \phi^{mp^{k-1}}\equiv\varphi^{mp^{k-1}}\equiv 1\mod p^k ϕmpk1φmpk11modpk

当模数为合数的情况,我们知道
m = lcm ( m 1 , m 2 , … , m t ) m=\text{lcm} (m_1,m_2,\dots,m_t) m=lcm(m1,m2,,mt)
其中 m i m_i mi 为在模 p i k i p_i^{k_i} piki 意义下的循环节
故接下来我们只讨论在 p p p 以及 p k p^k pk 的循环节大小

首先讨论质数处的循环节:
若 5 为 p p p 的二次剩余即 ( 5 p ) = 1 \left(\frac{5}{p}\right)=1 (p5)=1
那么 ϕ p − 1 ≡ φ p − 1 ≡ 1 m o d    p \phi^{p-1}\equiv \varphi^{p-1}\equiv 1\mod p ϕp1φp11modp,故 m ∣ p − 1 m|p-1 mp1
若 5 非 p p p 的二次剩余,发现
ϕ p = 1 2 p ∑ i = 0 p ( p i ) 5 i ≡ 1 2 ( 1 + 5 p ) ≡ 1 2 ( 1 + 5 p − 1 2 5 ) ≡ 1 2 ( 1 − 5 ) ≡ φ m o d    p \phi^p=\frac{1}{2^p}\sum_{i=0}^p\binom{p}{i}\sqrt 5^i\equiv \frac{1}{2}(1+\sqrt 5^p)\\\equiv \frac{1}{2}(1+5^{\frac{p-1}{2}}\sqrt 5)\equiv \frac{1}{2}(1-\sqrt 5)\equiv \varphi \mod p ϕp=2p1i=0p(ip)5 i21(1+5 p)21(1+52p15 )21(15 )φmodp
同理可得 φ p ≡ ϕ m o d    p \varphi^p\equiv \phi\mod p φpϕmodp
故可以发现 f p = ϕ p − φ p 5 ≡ p − 1 m o d    p f_p=\frac{\phi^p-\varphi^p}{\sqrt 5}\equiv p-1\mod p fp=5 ϕpφpp1modp
f p + 1 ≡ ϕ φ − φ ϕ 5 ≡ 0 m o d    p , f p + 2 ≡ p − 1 m o d    p f_{p+1}\equiv \frac{\phi\varphi-\varphi\phi}{\sqrt 5}\equiv 0\mod p,f_{p+2}\equiv p-1\mod p fp+15 ϕφφϕ0modp,fp+2p1modp
于是发现 m ∣ 2 p + 2 m|2p+2 m2p+2
有快速判断 p p p 是否为模 5 的二次剩余的方法,即二次互反律
( p 5 ) ( 5 p ) = ( − 1 ) 5 − 1 2 p − 1 2 = 1 \left(\frac{p}{5}\right)\left(\frac{5}{p}\right) =(-1)^{\frac{5-1}{2}\frac{p-1}{2}}=1 (5p)(p5)=(1)2512p1=1
( 5 p ) = ( p 5 ) \left(\frac{5}{p}\right)=\left(\frac{p}{5}\right) (p5)=(5p),当 p ≡ ± 1 m o d    5 p\equiv \pm 1\mod 5 p±1mod5 时有二次剩余

在质数次幂的循环节
m ′ ∣ m p k − 1 m'|mp^{k-1} mmpk1,由
ϕ m p k − 1 ≡ φ m p k − 1 ≡ 1 m o d    p \phi^{m{p^{k-1}}}\equiv \varphi^{mp^{k-1}}\equiv 1\mod p ϕmpk1φmpk11modp
于是 f m p k − 1 = 0 , f m p k − 1 + 1 = 1 f_{mp^{k-1}}=0,f_{mp^{k-1}+1}=1 fmpk1=0,fmpk1+1=1,得证

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值