一、题目描述
给你一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长有效(格式正确且连续)括号子串的长度。
示例 1:
输入:s = "(()"
输出:2
解释:最长有效括号子串是 "()"
示例 2:
输入:s = ")()())"
输出:4
解释:最长有效括号子串是 "()()"
示例 3:
输入:s = ""
输出:0
二、解题
动态规划
动态规划主要思考两种问题,第一个边界条件,是否往前找时到达了前面的第一个字符;第二种是左右括号条件,如果当前括号为右括号,则判断前一个括号是否为左括号,然后结合边界条件,如果前面的括号是右括号,则判断他是否已经匹配了,如果匹配则继续往前找一位。
class Solution {
public int longestValidParentheses(String s) {
//动态规划
int[] dp = new int[s.length()];
int maxLength = 0;
for(int i = 1;i<s.length();i++){
//判断是够为右括号
if(s.charAt(i) == ')'){
//判断前面的括号是否为左括号
if(s.charAt(i-1) == '('){
//边界条件判断
//1.如果前面的括号不是第一个括号
if(i-2>=0){
dp[i] = dp[i-2]+2;
}else{
//如果前面的括号是第一个括号,只能是两个括号,也是();
dp[i] = 2;
}
}else if(i - dp[i - 1] > 0 && s.charAt(i - dp[i-1] -1) == '('){
//如果当前的括号为右括号 ....)) 也就是前面的括号也是正常的左右括号,继续向前找
//则需要判断前面的括号是否达到了边界的开始值
if(i - dp[i-1] - 2 >= 0){
//如果没有达到初始边界
dp[i] = dp[i-1] + 2 + dp[i-dp[i-1]-2];
}else{
dp[i] = dp[i-1] + 2;
}
}
}
maxLength = Math.max(maxLength,dp[i]);
}
return maxLength;
}
}
栈
- 对于遇到的每个 ‘(’ ,我们将它的下标放入栈中
- 对于遇到的每个‘)’ ,我们先弹出栈顶元素表示匹配了当前右括号:
- 如果栈为空,说明当前的右括号为没有被匹配的右括号,我们将其下标放入栈中来更新我们之前提到的「最后一个没有被匹配的右括号的下标」
- 如果栈不为空,当前右括号的下标减去栈顶元素即为「以该右括号为结尾的最长有效括号的长度」
class Solution {
public int longestValidParentheses(String s) {
//栈
int maxLength = 0;
Deque<Integer> stack = new LinkedList<>();
stack.push(-1);
for(int i = 0;i<s.length();i++){
if(s.charAt(i) == '('){
//如果是左括号 将下标存入栈中
stack.push(i);
}else{
//如果是右括号 则出栈
stack.pop();
//如果栈为空
if(stack.isEmpty()){
stack.push(i);
}else{
maxLength = Math.max(maxLength,i-stack.peek());
}
}
}
return maxLength;
}
}
左右遍历
class Solution {
public int longestValidParentheses(String s) {
int left = 0, right = 0, maxlength = 0;
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == '(') {
left++;
} else {
right++;
}
if (left == right) {
maxlength = Math.max(maxlength, 2 * right);
} else if (right > left) {
left = right = 0;
}
}
left = right = 0;
for (int i = s.length() - 1; i >= 0; i--) {
if (s.charAt(i) == '(') {
left++;
} else {
right++;
}
if (left == right) {
maxlength = Math.max(maxlength, 2 * left);
} else if (left > right) {
left = right = 0;
}
}
return maxlength;
}
}