
AI
文章平均质量分 73
MavenTalk
这个作者很懒,什么都没留下…
展开
-
揭秘 DeepSeek 爆火真相:这届 AI 凭啥让全网 “上头”?
各位网友们,最近大家是不是发现,不管是刷社交媒体,还是和朋友聊天,都绕不开一个话题——DeepSeek!这个突然爆火的国产AI,究竟有什么魔力,能让全网为之疯狂?今天,咱们就来好好扒一扒。原创 2025-02-11 16:29:43 · 360 阅读 · 0 评论 -
音频合成的常见问题
使用了1年多的音频合成,有些常见的问题分享给大家,避免走一些弯路原创 2025-01-11 10:06:28 · 1108 阅读 · 0 评论 -
AI生成代码与AI生成文案有什么不同
AI生成代码和AI生成文案在目标、用途、结构和评估方式等方面存在显著差异。以下是具体的对比:目标和用途• AI生成代码• 目标:创建可执行的软件、脚本或程序片段,用于完成特定任务。• 用途:开发应用程序、解决技术问题、自动化流程等。• 需求:逻辑性强、语法严格,强调功能性和错误容忍度低。• AI生成文案• 目标:创作吸引人的内容,传达信息或引发情感共鸣。• 用途:市场营销、社交媒体、广告文案、文学创作等。• 需求:语言流畅、富有创意,强调吸引力和情感表达。原创 2025-01-03 08:42:50 · 602 阅读 · 0 评论 -
微信小程序TTS解决方案
微信小程序原生语音合成 API(基础且简单)局限性:这种方式需要预先准备好语音音频文件,不能直接将输入的文本转换为语音,在需要动态生成语音内容的场景下不太适用。使用第三方TTS服务(功能丰富但可能涉及费用等情况)优势:音色多样,包括男女声多种音色选择,能够满足不同场景下的语音播报需求,如客服语音、阅读类应用等。并且语音合成的效果在自然度和清晰度上表现较好。劣势:部分高级功能或者大量语音合成请求可能涉及收费,需要根据科大讯飞的收费标准进行评估和购买服务。百度语音合成介绍:百度语音合原创 2024-12-18 09:24:10 · 2092 阅读 · 0 评论 -
ComfyUI 与 Stable Diffusion WebUI 的优缺点比较
ComfyUI与Stable Diffusion WebUI的优缺点比较,从界面操作到灵活性应用,从社区支持到适用群体差异等等。原创 2024-12-15 08:11:54 · 2706 阅读 · 0 评论 -
ComfyUI是什么及如何使用
轻量级且运行速度快:相比一些传统的图像生成工具,ComfyUI的资源占用相对较低,能够在较低配置的设备上较为流畅地运行,并且生成图像的速度也较快,大大提高了创作效率.高度灵活与可配置:用户可以通过将不同的节点链接在一起来构建各种复杂的图像生成工作流程,每个节点都代表着一个特定的功能或操作,如加载检查点模型、输入提示、指定采样器等,用户可以根据自己的需求自由组合和调整这些节点,以实现个性化的图像生成效果.工作流透明直观。原创 2024-12-15 08:05:35 · 1917 阅读 · 0 评论 -
AI 拯救不了你 SaaS
AI在多方面具有助力SaaS发展的潜力,但能否“拯救”SaaS还需综合多因素考量,特别是在最关键的表单填充方面,流程推动可由程序自动化完成。原创 2024-12-14 09:11:28 · 722 阅读 · 0 评论 -
人人都有几个Copilot的时代即将变为现实
未来人人拥有多个Copilot是有可能成为现实的,以下是具体的分析:Copilot有逐渐走进更多软件的趋势,但要走进所有的离线和在线软件,还面临一些挑战,以下是具体分析:原创 2024-12-14 09:08:24 · 697 阅读 · 0 评论 -
Windows Copilot 与OpenAI、Bing有什么关系
公开资料显示,MicroSoft前没有出色的AI大模型能力,鉴于其投资OpenAI及对外提供Azure服务的事实来说明,Copilot的模型能力与OpenAI离不开。原创 2024-12-13 07:32:15 · 817 阅读 · 0 评论 -
windows Copilot 使用指南
Windows Copilot是微软在Windows 11中加入的AI助手,以下是对它的详细介绍:以下是在Windows 11中使用Windows Copilot的详细方法:以下是一个使用Windows Copilot进行数据可视化的实战案例 :某教育机构的管理员想要直观地查看学生在不同科目上的成绩分布情况,以便快速了解学生的学习状况,找出需要重点关注的科目和学生群体。原创 2024-12-13 07:28:20 · 2470 阅读 · 0 评论 -
AI大模型训练的万卡集群是什么概念
AI大模型训练的万卡集群是什么概念。nvidia万卡集群采用什么解决方案应对问题原创 2024-12-12 11:33:50 · 1485 阅读 · 0 评论 -
Open-webui:本地化管理AI大模型
Open WebUI 是一个开源的用户界面工具,用于运行和管理大语言模型 (LLM) 及其他人工智能功能。它的主要目的是简化人工智能模型的本地部署和操作,让用户能够方便地通过浏览器界面与各种 AI 模型进行交互。原身是Ollama的web界面,同时兼容了openai接口格式,后来随着兼容openai接口格式的大模型越来越多,索性就独立成一个单独的开源项目了。它尤其适合那些希望完全控制其 AI 环境并简化操作流程的用户,如开发个性化聊天机器人或构建内容生成平台。• 高效管理多个 AI 模型及其数据。原创 2024-12-07 06:33:54 · 6092 阅读 · 0 评论 -
AI大模型领域GraphRAG的发展现状
GraphRAG是微软于2024年开源的一项前沿技术,通过结合知识图谱和图机器学习,显著提升了检索增强生成(RAG)模型的性能。它旨在解决传统RAG方法在处理大规模数据集和复杂推理任务中的局限性。GraphRAG的核心技术包括利用大模型(LLM)从非结构化文本中提取实体和关系,构建知识图谱。图谱中的节点代表实体,边表示实体之间的关系,这种结构化的信息帮助模型更好地理解数据的内在结构。原创 2024-12-01 08:49:56 · 938 阅读 · 0 评论 -
Spring也要积极拥抱AI了:SpringAI
• 支持所有主要的向量数据库提供商,如Apache Cassandra、Azure Vector Search、Chroma、Milvus、MongoDB Atlas、Neo4j、Oracle、PostgreSQL/PGVector、PineCone、Qdrant、Redis和Weaviate等。• 封装重复的生成AI模式,转换发送到和从语言模型(LLMs)接收的数据,并提供跨不同模型和用例的可移植性。• 支持的模型类型包括聊天完成、嵌入、文本到图像、音频转录、文本到语音和内容审核。原创 2024-11-30 06:42:00 · 377 阅读 · 0 评论 -
如何看待工作中大规模使用 AI 写代码
尽管 AI 在提供代码片段方面具有一定的帮助,但要完成完整的工作,仍然需要人类开发者发挥主导作用,充分利用自身的经验、判断力和创造力,将 AI 作为辅助工具,以实现高质量、符合实际需求的项目成果。总的来说,为每个开发人员配置 AI 写代码工具既有积极的影响,也带来了新的挑战,关键在于如何合理利用这一工具,使其成为提升开发质量和效率的助力,而不是产生负面的效果。缺乏深度理解:AI 生成的代码可能缺乏对业务上下文和特定需求的深入理解,导致生成的代码在某些情况下不符合实际的业务场景,需要大量的人工审查和修改。原创 2024-11-30 06:41:39 · 796 阅读 · 0 评论 -
如何提高大语言模型(AI LLM)的内容输出质量
世界级的模型中,中文支持的都不是很好,提高中文语料在模型训练中的数据就显得尤其重要。原创 2024-11-25 09:11:33 · 1793 阅读 · 0 评论 -
阿里Qwen系列开源模型介绍
Qwen2-72b-instruct模型在安全性方面与GPT-4的表现相当,并且显著优于Mixtral-8x22b模型,在处理多语言不安全查询时,能够有效降低生成有害响应的比例。百川2也通过了多项安全评估,显示其安全性优于其他一些开源语言模型.原创 2024-11-23 06:49:17 · 1992 阅读 · 0 评论 -
AI Native原生硬件产品一览
以下是一些经典的 AI Native 原生应用硬件产品:Rabbit R1:AIPin:Rewind 推出的可穿戴 AI 挂坠(现更名为 Limitless):Ray-Ban Meta 智能眼镜:360 儿童手表 A9 AI 红衣版:小度旗下硬件产品搭载的 DuerOS X 操作系统:原创 2024-11-11 10:08:34 · 1103 阅读 · 0 评论 -
为什么几乎所有大模型的对话窗口都是打字机效果向外输出文字
为什么几乎所有大模型的对话窗口都是打字机效果向外输出文字。原创 2024-11-11 10:09:20 · 1652 阅读 · 0 评论 -
未来AI LLM的发展趋势
LLM 的发展趋势呈现出多方面的特点,并非单一线性发展,也许在某个节点会发生差异化路线,即便是scaling law,也不一定是未来AGI的实现路径。原创 2024-11-10 08:55:59 · 1122 阅读 · 0 评论 -
AI大模型幻觉解决方案之一RAG方案的优缺点
大模型结合知识库解决方案的优点和缺点如下:一、人工更新专家编辑数据录入员操作二、自动更新数据采集与爬虫技术接口集成与数据推送机器学习与自然语言处理辅助更新原创 2024-11-10 08:55:23 · 1245 阅读 · 0 评论 -
基于AI大模型开发应用层产品经典解决方案:ASR+LLM+TTS
ASR(自动语音识别)功能:将人的语音转换为文本,是整个流程的起始环节,负责接收用户的语音输入并将其转化为计算机可处理的文本信息。技术实现:通常基于深度学习算法,使用大量的语音数据进行训练。例如,采用卷积神经网络(CNN)对语音信号进行特征提取,然后利用循环神经网络(RNN)或 Transformer 架构对提取的特征进行序列建模和文本预测。常见的 ASR 系统有百度的 Deep Speech、科大讯飞的语音识别技术等。原创 2024-11-09 12:00:13 · 2983 阅读 · 0 评论 -
做AI大模型应用层产品研发,基本绕不开这几个大模型API
推出了自主智能体 AutoGLM,但目前该智能体处于内测阶段,还未正式上线。:关于阶跃智能的公开信息相对较少,较为低调。原创 2024-11-09 09:02:17 · 1378 阅读 · 0 评论 -
《AI 大模型应用开发的未来趋势:洞察与预测》
金融、医疗、教育等行业将拥有专门为其定制的大模型,这些模型将深度融合行业知识和数据特点,提供更精准和有效的解决方案。例如,GPT-4 等模型的出现已经展示了超大规模模型的强大能力,未来我们有望看到规模更为惊人的模型,其语言理解和生成能力将达到新的高度。在科技日新月异的当下,AI 大模型的应用开发正以前所未有的速度发展,并展现出令人瞩目的未来趋势。此外,随着行业的发展,专门针对自动驾驶的大模型将不断优化,考虑到不同地区的交通规则、道路状况和驾驶习惯,实现更高程度的定制化。实战案例:自动驾驶领域的未来展望。原创 2024-11-09 08:40:41 · 443 阅读 · 0 评论 -
什么是AI Native以及未来的技术发展路径
AI Native 技术未来可能会沿着以下几条路径演变:原创 2024-11-08 15:54:31 · 1950 阅读 · 0 评论 -
使用AI工具生成代码时的几点注意事项
清晰具体:提供明确、具体的需求和上下文信息,避免模糊不清的描述。结构化信息:使用分点、标题或代码块等方式组织信息,便于模型理解。逐步推进:对于复杂任务,分阶段提供需求和反馈,确保每一步都准确无误。验证和测试:始终对生成的代码进行验证和测试,确保其正确性和功能性。持续学习:通过与模型的互动,学习和理解生成代码的逻辑和最佳实践,提升自身编程能力。利用ChatGPT或Claude等AI工具可以显著提升代码编写和重构的效率,但关键在于如何有效地与这些工具互动。原创 2024-11-07 13:30:08 · 1486 阅读 · 0 评论 -
宣称自己公司是AI公司,将会比较尴尬
随着AI技术的不断成熟和普及,各行各业将越来越多地将AI集成到其核心业务中,使得AI不再是单独的、独立的公司或部门,而是成为所有公司的基础组成部分。:随着AI技术成为各行业的基础组成部分,传统意义上的“AI公司”可能会逐渐转变为提供AI解决方案或服务的子公司或部门,而不再作为独立实体存在。:不同企业和行业对AI技术的需求各异,独立的AI公司可以更灵活地满足这些多样化的需求,提供定制化的解决方案。:大型科技公司在AI领域的投入和布局使得独立AI公司的生存和发展面临更大的挑战,促使行业整合加速。原创 2024-11-02 13:56:21 · 909 阅读 · 0 评论 -
这几款AI搜索产品,你用过几个?
页面简洁,生成速度快,回答要点清晰,图片和视频内容与文字分左右两列排版,引用部分有数字小标,点击可直接跳转至出处。:该功能不仅支持传统的关键词搜索,还允许用户通过自然语言进行对话式查询,提供详细的回答、摘要以及相关建议。其特点是对网页内容进行总结,直接提供答案,没有广告的干扰,使用了混合专家模型,预训练速度、推理速度较快。:国内首个融入大模型技术能力的 AI 搜索产品,由昆仑万维推出,包括 AI 搜索、对话、画画、写作、识图、速读、数据分析等多项功能,可在网页端和手机端无缝切换。原创 2024-11-02 13:47:40 · 1721 阅读 · 0 评论 -
AI搜索与传统的搜索有何异同
AI搜索通过融合先进的人工智能技术,提升了搜索的智能化、个性化和交互性,能够更好地理解和满足用户需求。而传统搜索则在信息检索的基础上,依赖关键词匹配和排序算法,功能较为有限。随着技术的不断进步,AI搜索有望在未来进一步改变人们获取信息的方式,提供更加高效和智能的搜索体验。AI搜索中引入广告内容是很可能的,且其呈现方式可能比传统搜索更为智能和个性化。然而,如何在提供高质量用户体验的同时,实现广告收入,以及如何平衡个性化与隐私保护,将是AI搜索平台需要重点考虑的问题。原创 2024-11-02 13:39:10 · 4053 阅读 · 0 评论 -
ChatGPT提供了不同的模型版本,用对了才能发挥最大的效用
OpenAI 的 ChatGPT 有多个不同的版本,每个版本在性能、功能和使用场景上略有不同。原创 2024-10-28 21:05:22 · 4562 阅读 · 0 评论 -
OpenAI o1与GPT-4o究竟强在哪里
OpenAI 的 O1 模型与 GPT-4o 相比,具有显著的技术进步和性能提升。:O1 模型在处理复杂问题(如编程和数学)方面表现出更强的推理能力。例如,在国际数学奥林匹克竞赛的资格考试中,O1 的正确率达到了83%,而 GPT-4o 仅为13%。:GPT-4o 支持图像和文本输入,而 O1 模型则专注于文本输入,但在文本处理上更加深入和精确。:O1 模型能够处理超过25000个单词的文本,这使得它能够进行长篇内容创作、扩展对话以及文档搜索和分析等应用场景。原创 2024-09-28 07:33:59 · 5891 阅读 · 0 评论 -
最新程序开发IDE工具——Melty
Melty IDE是一款开源的AI代码编辑器,由Charlie Holtz和Jackson de Campos两位天才创办,并且得到了Y Combinator的强力支持。这款编辑器的主要目标是理解开发者从终端到GitHub的整个编码过程,并与开发者协作编写生产就绪的代码。。原创 2024-09-25 15:44:47 · 2466 阅读 · 0 评论 -
软件企业毛利率正在变得越来越低
红利期逐渐消退,软件人员的工资水平也在逐渐恢复到正常水平,以往的高薪资水准慢慢下降,对开发人员的心理也是一个不小和冲击,但开发人员需要转变思路,慢慢接受这种变化,否则很难在未来的就业环境中找到自己的定位。:技术的快速发展使得软件开发工具和平台日益标准化和自动化,这降低了开发成本,但同时也增加了市场上同质化产品的数量,导致价格竞争,进而影响毛利率。:政府对软件行业的政策和法规可能会影响企业的成本结构和定价策略,例如,税收优惠政策的取消或知识产权保护的加强可能会增加企业的运营成本。原创 2024-09-24 09:11:10 · 581 阅读 · 0 评论 -
AI辅助编码工具如何影响着程序员开发群体
AI辅助编码工具的出现对程序员开发群体产生了深远的影响,有一些初步基础的程序员,可以借助AI工具的加持,生产效率大大提升,达到中高级程序员的水平。:AI工具如GitHub Copilot能够根据程序员的代码上下文,实时提供代码建议,极大地提高了编码速度,减少了重复劳动。:AI工具可以集成到现有的开发环境和工作流程中,如IDE插件、代码审查工具等,自动化某些开发任务,如测试、部署和监控。:AI工具在项目管理方面也发挥作用,能够自动执行复杂的任务,提供实时进度洞察,降低风险,优化资源分配。原创 2024-09-24 09:07:00 · 870 阅读 · 0 评论 -
如何快速上手一个Github的开源项目
程序研发领域正是有一些热衷开源的小伙伴,技能迭代才能如此的迅速,因此,快速上手一个GitHub上的开源项目,基本上已经变成很个程序员小伙伴必须掌握的技能,因为终究你会应用到其中的一个或多个项目,帮助自己快速完成开发任务README.mdLICENSEgit clonegit pullgit addgit commitgit push通过这些步骤,你可以快速上手并参与到GitHub的开源项目中。记住,参与开源项目是一个学习和成长的过程,不要害怕犯错,积极参与和贡献是提高技能的最好方式。原创 2024-09-23 10:15:55 · 1555 阅读 · 0 评论 -
如何使用AI大模型快速学习Python
如果你有一点的开发基础,根本不用担心不会使用Python直接应用到实际项目中去,不管是写代码、改代码、重构代码或者是找出代码的Bug、解读代码逻辑,统统不在话下。:参加在线课程,如Udemy上的"AI大模型应用从入门到实战",或Bilibili上的"吴恩达亲授最新AI课程",这些课程通常包含实战项目和案例分析。:加入实际项目,如开源项目或个人项目,将所学知识应用于解决实际问题。:通过课程和教程,例如网易云课堂的"AI辅助python零基础编程入门",学习AI大模型的相关知识,包括模型训练、优化和应用。原创 2024-09-23 09:54:02 · 1361 阅读 · 0 评论 -
多模态大模型应用开发技术学习
前篇提到多模态模型应用是未来的应用方向,本篇就聊聊技术学习方面的内容。原创 2024-09-22 18:16:38 · 1437 阅读 · 0 评论 -
多模态交互才是人机交互的未来
这种模型的核心在于其极强的多模态理解与生成能力,即能够融合各种类型的信息进行统一的语义、情景分析和上下文关联,从而更好地理解用户意图、实现接近人类的复杂情境理解和反应。此外,大语言模型的未来发展可能会包括多模态技术的融合,这意味着模型将能够处理和理解文本、图片、音频和视频等不同类型的数据。未来,随着AI技术的不断进步,多模态交互模型将在教育、编程、医疗、娱乐等多个领域发挥更大的作用,为人类提供更加智能化和个性化的服务。同时,随着技术的不断发展,我们也可以期待更多创新的交互方式的出现,进一步提升用户体验。原创 2024-09-22 14:49:47 · 1643 阅读 · 0 评论 -
新一代交互模式:LUI&CUI&VUI
随着技术的发展,特别是人工智能和机器学习的进步,交互方式也在不断演变。这些新概念代表了交互方式的多样化和个性化趋势,强调了用户体验的无缝性、直观性和智能性。随着技术的不断进步,我们可以期待更多创新的交互方式出现。原创 2024-09-04 10:48:30 · 2189 阅读 · 0 评论 -
SaaS引入AI大模型能力,能否焕发新生
AI大模型通过提供强大的数据处理、自然语言处理和机器学习等功能,可以帮助SaaS服务商提升产品的智能化水平,增强用户体验,并创造新的商业模式。然而,AI大模型的引入也带来了挑战,包括对数据隐私和安全的担忧、对现有业务流程的冲击、以及对新技术的投资和人才需求。通过这些方法,SaaS提供商能够将AI大模型的强大功能集成到他们的产品中,从而提供更加智能化和个性化的服务。总的来说,AI大模型为SaaS行业提供了新的增长点和创新机会,但同时也需要企业进行相应的战略规划和技术准备,以充分利用这一技术带来的潜力。原创 2024-09-02 07:32:46 · 1323 阅读 · 0 评论