
Python
文章平均质量分 83
MavenTalk
这个作者很懒,什么都没留下…
展开
-
如何使用Python进行音频片断合成
的三角函数生成,方波可由正弦波结合符号函数生成,锯齿波通过线性插值生成,白噪声则用随机函数生成。你还可以根据需求进一步扩展该脚本,例如添加对音频片段的剪辑、调整音量、淡入淡出等效果,使合成的音频更加丰富和专业。安装后,利用其提供的合成器类,可自定义振荡器类型,如锯齿波、方波或正弦波,并调制振幅来创造不同音色,还能集成。后,可从音频文件创建音频片段对象,进行音频叠加、混合等操作,还能设置音频的音量、时长等属性,最后通过。方法保存合成的语音为音频文件,适合需要网络连接且追求较高语音质量的场景.原创 2024-12-21 18:55:29 · 503 阅读 · 0 评论 -
如何使用Python处理视频合成
合并多个视频时,若音频的长度和采样率不一样,容易出现音频无法完美对接、同步混乱的问题。,需确保已安装 ffmpeg,并正确设置环境变量,因为 MoviePy 依赖它来处理视频.参数可自动适配音频,确保音频同步.通过 pip 命令安装,即。函数合并视频时,添加。原创 2024-12-21 18:53:07 · 1036 阅读 · 0 评论 -
阿里云免费SSL证书调整为3个月后,自动升级SSL证书方案
通过这个实战案例,就可以实现阿里云SSL证书的自动化更新,减少手动更换证书的繁琐操作,并且能够确保网站的SSL证书始终处于有效状态,保障网站的安全性和正常运行。原创 2024-12-16 08:37:07 · 1899 阅读 · 0 评论 -
新手上路,学Go还是Python
【代码】新手上路,学Go还是Python。原创 2024-12-10 21:34:33 · 2619 阅读 · 0 评论 -
RPC与HTTP调用模式的架构差异
RPC(Remote Procedure Call,远程过程调用)和 HTTP 调用是两种常见的通信模式,它们在架构上有以下一些主要差异:协议层面连接方式服务发现调用方式安全性灵活性负载均衡综上所述,RPC 更注重性能和高效的通信,适用于对性能要求较高、内部系统之间的紧密集成;而 HTTP 调用则更通用、灵活,适用于跨平台、跨语言的开放系统集成。在实际应用中,应根据具体的需求和场景来选择合适的调用模式。原创 2024-12-01 08:55:19 · 1495 阅读 · 0 评论 -
Python批量处理客户明细表格数据,挖掘更大价值
数据加工-》数据清洗-》数据探索-》数据归类-》数据分析原创 2024-09-27 15:59:28 · 754 阅读 · 0 评论 -
Python中流行的开源OCR项目
由百度开发的OCR工具库,支持多种语言的文字识别,包括中英文,同时支持倾斜、竖排等多种方向的文字识别。:这是一个Python 3下的文字识别工具包,支持简体中文、繁体中文(部分模型)、英文和数字的常见字符识别。:Python-tesseract是一个OCR工具,它是Tesseract-OCR引擎的Python封装,可以用来识别图像中的文字。它支持多种图像格式,并且可以在不同的操作系统上运行。:这是一个基于TensorFlow 2 & PyTorch的OCR库,由Mindee公司提供,支持多种语言和格式。原创 2024-09-27 15:56:31 · 967 阅读 · 0 评论 -
Python在进行LLM应用相关开发常用的技术框架
实际使用中,大家在调研或者Demo阶段,倾向性还可以,但生产应用时,经常会产生些新的需求,如果在Langchain的基础上做二次开发,那是相当痛苦的。:Hugging Face提供了一个名为transformers的库,它包含了大量预训练的语言模型和工具,用于NLP任务,如预处理、训练、微调和部署。:由Hugging Face提供,这个库包含了大量预训练的模型,包括BERT、GPT-2等,并且可以用于LLM的开发。:这是一个自然语言处理库,提供了一些预训练的模型,可以用于LLM的开发。原创 2024-09-26 09:47:44 · 820 阅读 · 0 评论 -
经典Python应用库一览
Python作为学习范围比较广泛的语言,不管是IT职业从业者,还是普通职场人士,都在用Python作一些高效率的工作处理工作。Python 拥有丰富的库和框架,适用于各种应用场景。原创 2024-09-26 09:42:29 · 1160 阅读 · 0 评论 -
Python的Pandas库学习指南
Pandas是一个强大的Python数据分析库,它提供了快速、灵活和表达力强的数据结构,旨在使数据清洗和分析工作变得更加简单易用。Pandas的功能非常强大和灵活,是数据分析师和科学家必备的工具之一。如此多的应用场景,学习掌握实属有必要。Pandas的灵活性和功能性使其成为数据科学家和分析师工具箱中的重要工具,适用于各种数据处理和分析任务。Pandas库因其强大的数据处理和分析能力,在数据科学和数据分析领域有着广泛的应用。记住,学习编程和数据分析是一个持续的过程,不断实践和挑战新项目是提高技能的关键。原创 2024-09-25 09:10:43 · 1536 阅读 · 0 评论 -
AI辅助编码工具如何影响着程序员开发群体
AI辅助编码工具的出现对程序员开发群体产生了深远的影响,有一些初步基础的程序员,可以借助AI工具的加持,生产效率大大提升,达到中高级程序员的水平。:AI工具如GitHub Copilot能够根据程序员的代码上下文,实时提供代码建议,极大地提高了编码速度,减少了重复劳动。:AI工具可以集成到现有的开发环境和工作流程中,如IDE插件、代码审查工具等,自动化某些开发任务,如测试、部署和监控。:AI工具在项目管理方面也发挥作用,能够自动执行复杂的任务,提供实时进度洞察,降低风险,优化资源分配。原创 2024-09-24 09:07:00 · 848 阅读 · 0 评论 -
如何使用AI大模型快速学习Python
如果你有一点的开发基础,根本不用担心不会使用Python直接应用到实际项目中去,不管是写代码、改代码、重构代码或者是找出代码的Bug、解读代码逻辑,统统不在话下。:参加在线课程,如Udemy上的"AI大模型应用从入门到实战",或Bilibili上的"吴恩达亲授最新AI课程",这些课程通常包含实战项目和案例分析。:加入实际项目,如开源项目或个人项目,将所学知识应用于解决实际问题。:通过课程和教程,例如网易云课堂的"AI辅助python零基础编程入门",学习AI大模型的相关知识,包括模型训练、优化和应用。原创 2024-09-23 09:54:02 · 1343 阅读 · 0 评论 -
那些久远的开发语言(COBOL、Pascal、Perl等)还有市场吗
例如,一些金融、保险、物流和零售行业的大型企业,以及政府部门,可能仍在寻找具备 COBOL 等老旧语言技能的开发者,以维护和更新他们的关键业务系统。在国内,一些传统企业和政府部门仍在使用老旧的系统,这些系统往往是由一些旧的开发语言编写,如 COBOL、Pascal、Perl 等。尽管新技术体系更新迭代不断,那些老旧语言开发的系统依旧在发挥着作用。未来,随着企业对信息化、数字化和智能化转型的需求增加,以及微服务架构和中台架构的兴起,预计会有更多的企业投入到老旧系统的重构工作中,以适应新时代的发展。原创 2024-08-22 10:02:38 · 863 阅读 · 0 评论 -
百川大模型AI对话实战——Python开发一个对话机器人
上面会涉及到很多Python常见的组件库,比如requests,json,subprocess,aiohttp等等,都是应对特殊功能,必须的安装包,只需要通过pip命令安装即可,否则无法正常使用。百川大模型开放提供API体验中心,体验不错,有小伙伴也对搭建自己的对话机器人比较兴趣,今天通过Python来简单介绍下,如何调用百川大模型的API来构建自己的小产品。参照网络资料,这里假设已经有正常的Python环境。重构一下,支持多个Key进行轮询,就可以更多的响应用户请求。执行程序,返回结果如下。原创 2023-12-21 14:16:54 · 2405 阅读 · 0 评论 -
指数退避重试
它通常用于处理临时性的故障,例如网络延迟、服务器过载或临时性的错误,以提高系统的可靠性和稳定性。基本思想是,当发生一个可重试的错误时,不是立即重试请求,而是等待一段时间,然后再尝试。而且,随着重试次数的增加,等待时间会指数级增长,这可以有效地减轻服务器压力和降低对资源的竞争。请注意,上述代码示例中的。通常,等待时间会成倍增加,例如,2秒、4秒、8秒,依此类推。发生错误时进行重试: 如果发生了可重试的错误,就等待设定的时间,然后进行重试。是一个需要进行重试的方法的占位符,你需要将其替换为你实际的业务逻辑。原创 2023-11-24 09:04:39 · 1419 阅读 · 0 评论 -
Java VS Python各自在AI人工智能领域的应用前景
机器学习库:虽然Python在机器学习库的支持方面更为丰富,但Java也有一些不错的机器学习库,例如Weka和DL4J(DeepLearning4j)。Weka是一个用于数据挖掘和机器学习的Java库,而DL4J是一个支持深度学习的库。强化学习:虽然Python在强化学习方面的生态系统更为成熟,但Java也有一些支持强化学习的库和工具,如Deeplearning4j的强化学习模块。规则引擎:Java的规则引擎库,例如Drools,可以用于开发基于规则的AI系统,使得系统可以根据预先定义的规则做出决策。原创 2023-08-02 09:26:16 · 1130 阅读 · 0 评论