大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
本文主要介绍了柑橘病虫害识别方案总结,希望能对同学们有所帮助。
文章目录
1. 方案一
1.1 赛题背景
柑橘黄龙病(HLB)是相橘产业的毁灭性病害,目前尚无公认有效的治疗方法,因此当前黄龙病防控“三板斧”是砍病树、杀木虱和用无病苗。针对当前两大“板斧”―—砍病树和杀木虱,开展基于数据驱动的相橘黄龙病智能且精准防控技术的研究。以“防治未病”为宗旨,开展相橘黄龙病唯一传播媒介——相橘木虱智能监测的研究。因此,本赛题以木虱、黄龙病、果蝇等病虫害进行识别检测。
数据说明:本次大赛所用可见光相橘病虫害图像,图像格式为jpg。此次比赛分为初赛和复赛两个阶段,两个阶段的区别是所提供样本的量级有所不同,并且检测任务不同,其它的设置均相同。训练集标签格式为:所标注内容的类别、归一化后的中心点x坐标、归一化后的中心点y坐标、归一化后的目标框宽度w、归一化后的目标框高度h(此处归一化指的是除以图片宽或高)。