keras load_model 加载模型出现的错误

本文介绍了使用Keras加载含有自定义Layer或损失函数的模型的三种方法:通过custom_objects参数、利用自定义对象作用域及加载时不进行编译。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Keras在load_model 时,如果模型中含有自定义Layer或者损失函数的时候会报错

先看下load_model 的函数定义:
在这里插入图片描述

法一:利用 custom_objects 参数

#假设模型包含一个 xxxxLayer 自定义层或者 xxxxloss自定义loss

from keras.models import load_model

model = load_model('./model.h5', custom_objects={'xxxxLayer ': xxxxLayer })
法二: 利用自定义对象作用域
from keras.utils import CustomObjectScope 
with CustomObjectScope({'xxxxLayer ': xxxxLayer }):    
	model = load_model('./model.h5')
法三:不进行模型的编译

该方式适合有自定义的loss函数时,加载模型时不进行编译即可

from keras.models import load_model

model = load_model('./model.h5', compile = False)
### Keras `load_model` 使用自定义损失函数 当使用 Keras 的 `load_model()` 函数加载保存的模型时,如果该模型包含了自定义的损失函数,则会抛出错误提示名称未定义。这是因为 Keras 默认无法识别这些不在标准库中的对象。 为了处理这种情况,在调用 `load_model()` 方法的同时传递一个字典给 `custom_objects` 参数即可解决问题。这个字典应该包含所有用于训练模型期间所使用的非内置组件及其对应的实现方法[^1]。 下面是一个具体的例子来展示如何操作: 假设有一个名为 `contrastive_loss_with_margin(margin=1)` 的自定义损失函数被用来编译并训练了一个 Siamese 网络结构下的双胞胎 LSTM 模型,并且现在想要重新载入此预训练好的模型文件 `my_siamese_lstm.h5`: ```python from keras.models import load_model def contrastive_loss_with_margin(y_true, y_pred, margin=1): '''计算对比损失''' square_pred = tf.math.square(y_pred) margin_square = tf.math.square(tf.math.maximum(margin - y_pred, 0)) return tf.math.reduce_mean((1 - y_true) * square_pred + y_true * margin_square) # 加载带有自定义损失函数的模型 model_path = "path/to/my_siamese_lstm.h5" model = load_model( model_path, custom_objects={"contrastive_loss_with_margin": contrastive_loss_with_margin} ) ``` 通过这种方式指定 `custom_objects` 可以让 Keras 正确解析和恢复整个模型架构以及权重而不会丢失任何特定于项目的配置或功能。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值