center loss的完全理解以及实现

本文详细探讨了Center Loss的原理,指出类别中心的动态变化方式,并通过对比两种更新策略,揭示了在每个batch内计算动态变化的合理性。重点介绍了如何利用Keras中的Embedding层实现Center Loss,并提供了相关资源链接。
摘要由CSDN通过智能技术生成

最近项目中需要 center loss 提升模型的效果,但是 center loss 的实现就有点不确定,看了很多的博客,基本都是臆测,还是看源码来的实在。

下面就大致说下 center loss 的实现:

1、原理:

原理这块大家可以参考别人的博客,或者paper,这里就简单叙述下:让得到全连接层向量距离对应类别中心的距离最小

2、问题

类别中心是动态变化的么?如何进行变化?

(1)是每个epoch结束后使用所有的样本重新聚类计算得到样本中心么?

(2)在每个batch内计算动态变化得到聚类中心

当然是第二种方式,第一种方式太过于直白,最大的问题就是更新的太滞后了,基本上业界没有这样用的。
那么第二种方式该如何实现?每个batch内不一定包含所有的类别图像,维护一个参数矩阵?如何初始化?如何得到类别中心点(聚类还是求均值?)?

3、具体的实现

确实需要一个参数矩阵来维护并更新我们得到的聚类中心,常规能想到的方式就是自定义一个layer,然后再layey种定义参数矩阵等等,最终加入模型进行训练.

还有一种更为简洁的方式就是使用 Embedding 层的方式进行辅助训练,Embedding 层不仅仅可以实现一个维度的映射,而且最重要的是该层里面也有参数,是一个可以被训练的层,因此一切到这里就可以结束了ÿ

以下是使用PyTorch实现Center Loss的代码示例: ```python import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F class CenterLoss(nn.Module): def __init__(self, num_classes, feat_dim, loss_weight=0.5): super(CenterLoss, self).__init__() self.num_classes = num_classes self.feat_dim = feat_dim self.loss_weight = loss_weight self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim)) def forward(self, x, labels): batch_size = x.size(0) # 计算当前batch中每个样本对应的中心 centers_batch = self.centers[labels] # 计算当前batch中每个样本与其对应中心之间的距离 dist = torch.sum((x - centers_batch) ** 2, dim=1) # 计算center loss center_loss = torch.mean(dist) # 更新中心 diff = centers_batch - x unique_label, unique_idx = torch.unique(labels, return_inverse=True) appear_times = torch.bincount(unique_idx, minlength=self.num_classes).float() appear_times = appear_times.unsqueeze(1) centers_update = torch.zeros_like(self.centers) centers_update.scatter_add_(0, labels.view(-1, 1).expand(batch_size, self.feat_dim), diff) centers_update = centers_update / (appear_times + 1e-8) self.centers.data = self.centers.data - self.loss_weight * centers_update.data return center_loss class Net(nn.Module): def __init__(self, num_classes, feat_dim): super(Net, self).__init__() self.fc1 = nn.Linear(feat_dim, 512) self.fc2 = nn.Linear(512, num_classes) self.center_loss = CenterLoss(num_classes, feat_dim) def forward(self, x, labels): x = self.fc1(x) x = F.relu(x) x = self.fc2(x) center_loss = self.center_loss(x, labels) return x, center_loss ``` 在这里,我们首先定义了一个`CenterLoss`类来计算中心损失。`CenterLoss`的`__init__`函数中包含中心矩阵`centers`,其大小为`(num_classes, feat_dim)`,其中`num_classes`为类别数,`feat_dim`为特征维度。`forward`函数接受输入的特征张量`x`和对应的标签`labels`,计算`x`和每个样本对应的中心之间的距离,然后计算中心损失并更新中心矩阵。在`Net`类中,我们将`CenterLoss`作为一个模块集成到模型中,同时在模型的前向传播中计算中心损失。 接下来,我们可以使用以下代码来训练模型: ```python net = Net(num_classes, feat_dim) optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum) for epoch in range(num_epochs): for batch_idx, (data, labels) in enumerate(train_loader): data, labels = data.to(device), labels.to(device) optimizer.zero_grad() outputs, center_loss = net(data, labels) softmax_loss = F.cross_entropy(outputs, labels) loss = softmax_loss + center_loss loss.backward() optimizer.step() ``` 在每个batch的训练中,我们首先将输入数据和标签送入设备中,然后将模型参数的梯度清零。接着,我们计算前向传播的结果和中心损失,然后使用交叉熵损失计算总损失,并进行反向传播和参数更新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值