KDD2019|基于注意力的深度学习如何实时预测购买还是浏览

文章提出了一种名为DIPN的深度意图预测网络,结合注意力机制和多任务学习,实时预测电子商务平台用户的购买意向。DIPN不仅考虑传统浏览行为,还引入触碰交互,通过层次注意力模型捕捉用户行为序列的内在关系。在大规模工业级数据上,DIPN表现出显著的优越性,并已在淘宝业务系统中部署。
摘要由CSDN通过智能技术生成

Buying or Browsing? : Predicting Real-time Purchasing Intent using Attention-based Deep Network with Multiple Behavior

Long Guo, Lifeng Hua, Rongfei Jia, Binqiang Zhao, Xiaobo Wang, Bin Cui

Alibaba Group, Peking University

https://dl.acm.org/doi/pdf/10.1145/3292500.3330670?download=true

电子商务平台是人们经常光顾的场所,在电子商务平台上可以寻找、比较并最终购买所需要的产品。

在电子商务中,有一个基本问题,即如何才能精准的预测用户的购买意向,为了预测用户的购买意向,非常重要的部分即为理解用户的潜在需求,只有比较好的理解了用户的需求所在,才能为商家和客户提供更好的服务。但是,很多工作都无法高精度并且实时地预测用户的购买意向,原因在于这些工作受限于比较传统的浏览交互行为的表示能力。

这篇文章提出了一种新的端到端深度网络,深度意图预测网络,简称DIPN,该网络能够实时预测用户的购买意向。该网络除了利用传统的浏览交互行为,还收集一种新的用户交互行为,即触碰交互行为,通过这种行为可以捕获更细粒度的实时用户特征。

为了对这些行为进行比较高效的比较,本文提出了一种分层注意力机制,其中,底层的注意力层集中在每个行为序列中的内部关系,顶层的注意力层用于学习不同的行为序列之间的关系。另外,作者们利用多任务学习来训练DIPN,进而将不同的用户行为模式更好地区分开来。

在大规模工业级数据集上的实验表明,DIPN显著优于基准方案。值得注意的是,只利用传统的浏览交互行为序列时,DIPN的AUC相对SOTA高了18.96%。DIPN已经部署在淘宝的业务系统中。

每个用户每天发生的浏览、点击、滑动次数统计示例如下

这篇文章的主要贡献如下

购买意图预测相关的工作如下

购买行为预测跟序列分类之间的关系如下

多任务学习的分类及描述如下

滑动交互行为主要包含以下三块特征

滑动和点击交互行为数据示例如下

本文所涉及的特征有以下几类

1. 滑动交互特征

2. 点击交互特征

3. 浏览交互特征

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值