中科大等提出深度注意力网络DAM用于捆绑推荐

Matching User with Item Set: Collaborative Bundle Recommendation with Deep Attention Network

Liang Chen, Yang Liu, Xiangnan He, Lianli Gao and Zibin Zheng

Sun Yat-sen University, University of Science and Technology of China, The University of Electronic Science and Technology of China

https://www.ijcai.org/Proceedings/2019/0290.pdf

大部分推荐系统中的研究都是集中在给用户推荐单个商品,比如很多协同过滤的工作都是对用户和商品之间的交互进行建模。但是,在很多真实应用场景中,平台需要给用户展示商品集合,比如,营销策略中会将多个商品打包在一起销售。

这篇文章中对用户推荐商品集合,即捆绑推荐,考虑对用户和商品的集合进行建模。作者们提出一种神经网络解决方案,即DAM,深层注意力多任务模型,该模型有两个特性

1. 设计了分解注意力网络对商品的embedding进行聚合,进而得到捆绑表示

2. 以多任务的方式对用户捆绑交互和用户商品交互联合建模,避免了用户捆绑交互的不足。

在真实数据集上的实验表明,DAM优于STOA的方案,验证了注意力和DAM中多任务学习的有效性。

商品捆绑图示如下

作者们所提模型主要解决以下问题

下面是问题描述

针对embedding聚合方式有多个

作者们采用下面一种基于注意力的聚合方式

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值