Matching User with Item Set: Collaborative Bundle Recommendation with Deep Attention Network
Liang Chen, Yang Liu, Xiangnan He, Lianli Gao and Zibin Zheng
Sun Yat-sen University, University of Science and Technology of China, The University of Electronic Science and Technology of China
https://www.ijcai.org/Proceedings/2019/0290.pdf
大部分推荐系统中的研究都是集中在给用户推荐单个商品,比如很多协同过滤的工作都是对用户和商品之间的交互进行建模。但是,在很多真实应用场景中,平台需要给用户展示商品集合,比如,营销策略中会将多个商品打包在一起销售。
这篇文章中对用户推荐商品集合,即捆绑推荐,考虑对用户和商品的集合进行建模。作者们提出一种神经网络解决方案,即DAM,深层注意力多任务模型,该模型有两个特性
1. 设计了分解注意力网络对商品的embedding进行聚合,进而得到捆绑表示
2. 以多任务的方式对用户捆绑交互和用户商品交互联合建模,避免了用户捆绑交互的不足。
在真实数据集上的实验表明,DAM优于STOA的方案,验证了注意力和DAM中多任务学习的有效性。
商品捆绑图示如下
作者们所提模型主要解决以下问题
下面是问题描述
针对embedding聚合方式有多个
作者们采用下面一种基于注意力的聚合方式