背单词,始终是复习英语的重要环节。在荒废了3年大学生涯后,Lele也终于要开始背单词了。
一天,Lele在某本单词书上看到了一个根据词根来背单词的方法。比如"ab",放在单词前一般表示"相反,变坏,离去"等。
于是Lele想,如果背了N个词根,那这些词根到底会不会在单词里出现呢。更确切的描述是:长度不超过L,只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个呢?这里就不考虑单词是否有实际意义。
比如一共有2个词根 aa 和 ab ,则可能存在104个长度不超过3的单词,分别为
(2个) aa,ab,
(26个)aaa,aab,aac...aaz,
(26个)aba,abb,abc...abz,
(25个)baa,caa,daa...zaa,
(25个)bab,cab,dab...zab。
这个只是很小的情况。而对于其他复杂点的情况,Lele实在是数不出来了,现在就请你帮帮他。
Input
本题目包含多组数据,请处理到文件结束。
每组数据占两行。
第一行有两个正整数N和L。(0<N<6,0<L<2^31)
第二行有N个词根,每个词根仅由小写字母组成,长度不超过5。两个词根中间用一个空格分隔开。
Output
对于每组数据,请在一行里输出一共可能的单词数目。
由于结果可能非常巨大,你只需要输出单词总数模2^64的值。
Sample Input
2 3 aa ab 1 2 a
Sample Output
104 52
做这道题之前建议做POJ的2778 我们知道2778求的是包含的有多少种 这题要的是不包含的有多少种
那么我们就显而易见可知只要求出所有的方案数减去包含的有多少种 也就是答案了
所以只要求出方案数是 [f(n-1) 1 ] [ 26 0;1 1] = [f(n) 1 ];
也用矩阵快速幂去加速 但是会超时 我们要保存每一次第一行的价值 所以我们加一列全是1的维度
这样就能存储啦 其实可以手推一下 是行得通的
/*
hdoj 2243
*/
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
using namespace std;
#define dbg(x) ;
struct Matrix
{
unsigned long long mat[40][40];
int n;
Matrix(){}
Matrix(int _n)
{
n=_n;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
mat[i][j] = 0;
}
Matrix operator *(const Matrix &b)const
{
Matrix ret = Matrix(n);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
for(int k=0;k<n;k++)
ret.mat[i][j]+=mat[i][k]*b.mat[k][j];
return ret;
}
};
unsigned long long pow_m(unsigned long long a,int n)
{
unsigned long long ret=1;
unsigned long long tmp = a;
while(n)
{
if(n&1)ret*=tmp;
tmp*=tmp;
n>>=1;
}
return ret;
}
Matrix pow_M(Matrix a,int n)
{
Matrix ret = Matrix(a.n);
for(int i=0;i<a.n;i++)
ret.mat[i][i] = 1;
Matrix tmp = a;
while(n)
{
if(n&1)ret=ret*tmp;
tmp=tmp*tmp;
n>>=1;
}
return ret;
}
struct Trie
{
int next[40][26],fail[40];
bool end[40];
int root,L;
int newnode()
{
for(int i = 0;i < 26;i++)
next[L][i] = -1;
end[L++] = false;
return L-1;
}
void init()
{
L = 0;
root = newnode();
}
void insert(char buf[])
{
int len = strlen(buf);
int now = root;
for(int i = 0;i < len;i++)
{
if(next[now][buf[i]-'a'] == -1)
next[now][buf[i]-'a'] = newnode();
now = next[now][buf[i]-'a'];
}
end[now] = true;
}
void build()
{
queue<int>Q;
fail[root]=root;
for(int i = 0;i < 26;i++)
if(next[root][i] == -1)
next[root][i] = root;
else
{
fail[next[root][i]] = root;
Q.push(next[root][i]);
}
while(!Q.empty())
{
int now = Q.front();
Q.pop();
if(end[fail[now]])end[now]=true;
for(int i = 0;i < 26;i++)
if(next[now][i] == -1)
next[now][i] = next[fail[now]][i];
else
{
fail[next[now][i]] = next[fail[now]][i];
Q.push(next[now][i]);
}
}
}
Matrix getMatrix()
{
Matrix ret = Matrix(L+1);
for(int i = 0;i < L;i++)
for(int j = 0;j < 26;j++)
if(end[next[i][j]]==false){
ret.mat[i][next[i][j]] ++;
dbg(i);
dbg(next[i][j]);
}
for(int i = 0;i < L+1;i++)
ret.mat[i][L] = 1;
return ret;
}
void debug()
{
for(int i = 0;i < L;i++)
{
printf("id = %3d,fail = %3d,end = %3d,chi = [",i,fail[i],end[i]);
for(int j = 0;j < 26;j++)
printf("%2d",next[i][j]);
printf("]\n");
}
}
};
char buf[10];
Trie ac;
int main()
{
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
int n,L;
while(scanf("%d%d",&n,&L)==2)
{
ac.init();
for(int i = 0;i < n;i++)
{
scanf("%s",buf);
ac.insert(buf);
}
ac.build();
Matrix a = ac.getMatrix();
a = pow_M(a,L);
unsigned long long res = 0;
dbg(a.n);
for(int i = 0;i < a.n;i++){
dbg(a.mat[0][i]);
res += a.mat[0][i];
}
res--;
dbg(res);
/*
* f[n]=1 + 26^1 + 26^2 +...26^n
* f[n]=26*f[n-1]+1
* {f[n] 1} = {f[n-1] 1}[26 0;1 1]
* 数是f[L]-1;
* 此题的L<2^31.矩阵的幂不能是L+1次,否则就超时了
*/
a = Matrix(2);
a.mat[0][0]=26;
a.mat[1][0] = a.mat[1][1] = 1;
a=pow_M(a,L);
unsigned long long ans=a.mat[1][0]+a.mat[0][0];
ans--;
dbg(ans);
ans-=res;
cout<<ans<<endl;
}
return 0;
}