牛顿迭代法

最近在实际工作中遇到一个解分线性方程的问题,于是学习了一下牛顿迭代算法,于是写了写个人的认识和体会。

首先直观的理解,如下图

是在f(x)  的零点附近取点(x0,f(x0)),然后以(x0,f(x0))做切线f(x0) + f'(x0)(x - x0) =0,求出切线的零点坐标x1 = x0 - f(x0)/f' (x0) ,依次进行下去x(n+1) = x(n) - f(x(n))/f'(x(n))------(1),可以发现点列(x0,x1,x2,x3...xn)越来越近我们要求的目标零点。

该原理可以用泰勒在x0出展开同样能得到相同的迭代关系。可以证明通过迭代,这个式子必然在f(x*) = 0时,收敛,详细的证明过程可以参考“http://wenku.baidu.com/link?url=Xwyi9EBNCpt3OB7bFdTO5uWYi1yTafB0tdPcP-eYWdR4gQOK-RHXFdA0qf_Zo7fnjWEhKkBgBXBMDUtHnjlIasTWuYjF1ARyUhrDsP_5WVe”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值