一个正整数N的因子中可能存在若干连续的数字。例如630可以分解为3*5*6*7,其中5、6、7就是3个连续的数字。给定任一正整数N,要求编写程序求出最长连续因子的个数,并输出最小的连续因子序列。
输入格式:
输入在一行中给出一个正整数N(1<N<231)。
输出格式:
首先在第1行输出最长连续因子的个数;然后在第2行中按“因子1*因子2*……*因子k”的格式输出最小的连续因子序列,其中因子按递增顺序输出,1不算在内。
输入样例:630输出样例:
3 5*6*7
*这个题刚刚看到确实想不出什么妙招来解决,所以循环尝试的暴力方法水到渠成。
1.此题目的原型类似于找素数,利用嵌套的循环来解决。
2.为了防止超时,又因为除了所有素数,至少会有两个数相乘,所以将循环控制在sqrt()中;
3.因为有记录长度的变量,可以利用此变量来将特殊情况(即所有素数)表示,即如果长度为1,那么
就输出长度1和数本身;
#include <iostream>
#include<cmath>
using namespace std;
int yin[13];
void show(int n,int yin[]){
cout<<n+1<<endl;
for(int i=0;i<=n;i++){
if(i!=0){
cout<<"*";
}
cout<<yin[i];
}
cout<<endl;
}
int main() {
int xb1=0;
int mge=0;
long long int shu;
cin>>shu;
for(int i=2;i<=sqrt(shu);i++){
int ge=0;
int myin[13];
long long int a=shu;
for(int j=i;(!(a%j))&&a;j++)
{
myin[ge]=j;
ge++;
if(ge>mge){
mge=ge;
for(int k=0;k<ge;k++){
yin[k]=myin[k];
xb1=k;
}
}
a/=j;
}
}
if(mge==0){
cout<<1<<endl;
cout<<shu<<endl;
}
else
show(xb1,yin);
return 0;
}