矩阵的逆

矩阵的逆

在线性代数中,给定一个n阶方阵A,若存在一n阶 方阵 B使得 AB=BA=E (或 AB=E BA=E 任满足一个),其中E为n阶单位矩阵,则称A是可逆的,且B是A的逆阵,记作 A1

若方阵A的逆阵存在,则称A为非奇异方阵或可逆方阵。

矩阵可逆的充分必要条件:

  • AB=E
  • A为满秩矩阵(即 r(A)=n );
  • A的特征值全不为0;
  • A的行列式 |A|0 ,也可表述为A不是奇异矩阵(奇异矩阵即行列式为0的矩阵);
  • A等价于n阶单位矩阵;
  • A可表示成初等矩阵的乘积;
  • 齐次线性方程组 AX=0 仅有零解;
  • 非齐次线性方程组 AX=b 有唯一解;
  • A的行(列)向量组线性无关;
  • 任一n维向量可由A的行(列)向量组线性表示。

    其实以上条件全部是等价的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值