矩阵的逆
在线性代数中,给定一个n阶方阵A,若存在一n阶 方阵 B使得 AB=BA=E (或 AB=E 、 BA=E 任满足一个),其中E为n阶单位矩阵,则称A是可逆的,且B是A的逆阵,记作 A−1 。
若方阵A的逆阵存在,则称A为非奇异方阵或可逆方阵。
矩阵可逆的充分必要条件:
- AB=E ;
- A为满秩矩阵(即 r(A)=n );
- A的特征值全不为0;
- A的行列式 |A|≠0 ,也可表述为A不是奇异矩阵(奇异矩阵即行列式为0的矩阵);
- A等价于n阶单位矩阵;
- A可表示成初等矩阵的乘积;
- 齐次线性方程组 AX=0 仅有零解;
- 非齐次线性方程组 AX=b 有唯一解;
- A的行(列)向量组线性无关;
任一n维向量可由A的行(列)向量组线性表示。
其实以上条件全部是等价的。