分享一下我老师大神的人工智能教程。零基础!通俗易懂!风趣幽默!还带黄段子!希望你也加入到我们人工智能的队伍中来!https://blog.csdn.net/jiangjunshow
精确率(precision),召回率(recall)由混淆矩阵(confusion matrix)计算得来。
在信息检索中,精确率通常用于评价结果的质量,而召回率用来评价结果的完整性。
实际上,精确度(precision)是二元分类问题中一个常用的指标。
精确度就是标记为“正”,而确实是”正“的样本占所有标记为“正”的样本的比例。
TPTP+FP TPTP+FP
- 在所有预测为正的样本中,确实为正的比例;
- 本身为正的样本中,被预测为正的比例
例如,假设数据集有 50 个样本,其中20个为正。分类器将 50 个样本中的 10 个标记为“正”(TP+FP=10),在这10个被标记为“正”的样本中,只有 4 个确实是“正“(TP=4),所以这里的精确度为 4/10 = 0.4,召回率为 4/20 = 0.2.
我么也可将这些概念,应用多分类问题,把每个类别单独视为”正“,所有其它类型视为”负“,考虑如下的混淆矩阵:
M = [ [14371, 6500, 9, 0, 0, 2, 316], [5700, 22205, 454, 20, 0, 11, 23], [0, 445, 3115, 71, 0, 11, 0], [0, 0, 160, 112, 0, 0, 0], [0, 888, 39, 2, 0, 0, 0], [0, 486, 1196, 30, 0, 74, 0], [1139, 35, 0, 0, 0, 0, 865]]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
分别计算各个类别的精确率与召回率:
n = len(M)for i in range(n): rowsum, colsum = sum(M[i]), sum(M[r][i] for r in range(n)) try: print 'precision: %s' % (M[i][i]/float(colsum)), 'recall: %s' % (M[i][i]/float(rowsum)) except ZeroDivisionError: print 'precision: %s' % 0, 'recall: %s' %0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
分享一下我老师大神的人工智能教程。零基础!通俗易懂!风趣幽默!还带黄段子!希望你也加入到我们人工智能的队伍中来!https://blog.csdn.net/jiangjunshow