分类性能评价指标——精确率,召回率,F1值详细解释

本文详细介绍了分类性能的评价指标,包括准确率、精确率和召回率。精确率衡量分类结果的正确性,召回率则关注分类的完整性。两者之间存在权衡关系,通常通过F1值来综合评估。F1值是精确率和召回率的调和平均,当精确率和召回率权重相同时,即为F1分数。在实际应用中,如疾病诊断,可能更重视召回率,即使精确率较低也能接受。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类性能的评价指标

在这里插入图片描述

准确率

准确率是全部参与分类的文本中,与人工分类结果吻合的文本所占的比例。

即:预测与真实标签相同的比例
A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy=\frac{TP+TN}{TP+TN+FP+FN} Accuracy=TP+TN+FP+FNTP+TN

精确率

也称为查准率,衡量分类结果的正确性,定义为:正确划分属于某类别的样本数量与实际划分属于该类别的全部样本数量的比值

即:你预测的是对的中,有多少真的是对的
P r e c i s i o

### 精确召回率F1分数的概念及计算 #### 定义 精确(Precision)衡量的是预测为正类的样本中有多少是真的正类。其定义如下: \[ \text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}} \] 其中 TP (True Positive) 表示真正例数量,而 FP (False Positive) 则表示假正例数量。 召回率(Recall),又被称为灵敏度或真阳(True Positive Rate, TPR),指的是实际为正类的情况下被正确识别的比例: \[ \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}} \] 这里 FN (False Negative) 是指错误地判定为负类的实际正类案例数目[^1]。 对于那些既重视精度又看重召回的应用场景来说,常常会把两者结合起来形成一个新的评价标准——F1得分(F1 Score): \[ F_1\,\text{Score} = 2 * \left(\frac{\text{Precision}\times\text{Recall}}{\text{Precision}+\text{Recall}}\right)\] 这个公式实际上就是精准度与召回之间的调,能够更好地平衡两者的贡献[^2]。 #### 计算实例 假设有一个二元分类模型,在测试集上的表现如下表所示: | 实际/预测 | 正类 (+) | 负类 (-) | | --- | --- | --- | | **正类 (+)** | 90 (TP) | 10 (FN) | | **负类 (-)** | 5 (FP) | 95 (TN) | 基于上述数据可得: - 精准为 \( P=\frac{90}{90+5}=0.947 \) - 召回率为 \( R=\frac{90}{90+10}=0.9 \) 因此, - F1 得分为 \( F_1=2*\left(\frac{(0.947*0.9)}{(0.947+0.9)}\right)=0.923 \) ```python from sklearn.metrics import precision_score, recall_score, f1_score y_true = [1]*90 + [0]*10 + [0]*5 + [1]*95 y_pred = [1]*90 + [0]*10 + [1]*5 + [0]*95 print(f"Precision: {precision_score(y_true[:100], y_pred[:100]):.3f}") print(f"Recall: {recall_score(y_true[:100], y_pred[:100]):.3f}") print(f"F1 Score: {f1_score(y_true[:100], y_pred[:100]):.3f}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值