clf=RandomForestClassifier(n_estimators=10,random_state=42,max_depth=4)
clf.fit(x_val, y_val)
for feature in zip(x_feature,clf.feature_importances_):
print(feature)
('V1', 0.0038989752714058486)
('V2', 0.0027038871454469217)
('V3', 0.026952559757713098)
('V4', 0.02159376763527073)
('V5', 0.01798767663560397)
('V6', 0.0005289202626423892)
('V7', 0.03184662339558151)
('V9', 0.012345829031178873)
('V10', 0.0917851429181416)
('V11', 0.0068039329696330765)
('V12', 0.20512839327084872)
('V14', 0.13941079529437903)
('V16', 0.12561363630520125)
(