思路
这个问题可以通过动态规划来解决。我们可以定义一个二维数组 dp,其中 dp[i][j] 表示将子串 s[i...j] 转换为回文字符串所需的最小插入次数。然后,我们可以利用动态规划的思想来填充这个数组。
解题方法
我们从右下角开始,逐步向左上角填充动态规划数组 dp。对于任意子串 s[i...j]:
如果 s[i] == s[j],则不需要进行插入操作,因为 s[i] 和 s[j] 已经匹配,所以 dp[i][j] = dp[i + 1][j - 1]。
如果 s[i] != s[j],则需要进行插入操作。此时,我们可以取左边或上边的最小插入次数,并加上1,即 dp[i][j] = min(dp[i + 1][j], dp[i][j - 1]) + 1。
最终,dp[0][n - 1] 即为整个字符串 s 转换为回文字符串所需的最小插入次数。
复杂度
时间复杂度:
我们需要填充一个二维数组 dp,其中有 n2 个元素。在填充每个元素时,我们需要进行常数次操作。因此,时间复杂度为 O(n2)
空间复杂度:
我们定义了一个二维数组 dp。因此,空间复杂度为 O(n2)
class Solution {
public:
int minInsertions(string s) {
int n = s.size();
vector<std::vector<int>> dp(n, std::vector<int>(n));
for (int i = n - 1; i >= 0; i--) {
for (int j = i + 1; j < n; j++) {
if (s[i] == s[j]) {
dp[i][j] = dp[i + 1][j - 1];
} else {
dp[i][j] = min(dp[i + 1][j], dp[i][j - 1])+1;
}
}
}
return dp[0][n - 1];
}
};
//dp[i][j] ? dp[i][i] = 0
// 动态规划 leetcode //codedoc
// d[i+1][j-1]
类似 516. 最长回文子序列
class Solution {
public:
int longestPalindromeSubseq(std::string s) {
int n = s.size();
// 创建二维动态规划表,dp[i][j] 表示 s 中从 i 到 j 的最长回文子序列的长度
std::vector<std::vector<int>> dp(n, std::vector<int>(n));
for (int i = n - 1; i >= 0; i--) {
dp[i][i] = 1; // 初始化,单个字符是回文子序列,长度为1
for (int j = i + 1; j < n; j++) {
// 分两种情况填写 dp 表
if (s[i] == s[j]) {
dp[i][j] = dp[i + 1][j - 1] + 2; // 左右端点相同,长度加2
} else {
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); // 左右端点不同,取左或上的最大值
}
}
}
// 返回结果,整个字符串的最长回文子序列长度位于 dp[0][n-1]
return dp[0][n - 1];
}
};