固体废弃物检测的机器视觉技术与数据集
1. 目标检测模型
1.1 GarbNet
GarbNet基于AlexNet模型,AlexNet曾在100万张图像上进行训练,能够识别1000种不同类别的物体,在当时的分类问题上取得了突破性进展。GarbNet对基础模型进行了重建,用于二分类,并优化以减少全连接层和卷积层中的神经元总数。其整体算法基于提取特定大小的图像部分并组合预测结果,但无法捕捉物体边界的精细细节。在碎片检测任务中,GarbNet的准确率达到了87.69%,不过当图像中检测到类似碎片的物体或碎片在远处时,会给出错误的预测。
1.2 OverFeat
OverFeat是一个较旧的卷积神经网络(CNN)模型,旨在同时解决三个任务:检测物体、对其进行分类以及细化其在图像中的位置。其主要特点包括使用不同大小和尺度的内核,输出不仅包括物体类别,还包括边界框,并为每个单独的类别累积框的大小。在解决街道垃圾检测任务时,该模型对烟头类别的精度为63.2%,召回率为61.02%;对树叶类别的精度为77.35%,召回率为60%。
1.3 Faster R - CNN
Faster R - CNN是一种基于区域的卷积神经网络(Region - Based Convolutional Neural Network),是对R - CNN和Fast R - CNN检测网络的改进。它属于两阶段检测方法,首先确定物体可能存在的区域,然后进行处理和分类。该模型基于区域提议网络(RPN)进行物体定位,其工作原理如下:
1. 将图像输入CNN,选择特征。
2. 在特征图上滑动可变大小的窗口,判断当前区域是否存在物体。 <
超级会员免费看
订阅专栏 解锁全文
1731

被折叠的 条评论
为什么被折叠?



