Win10--Yolov5环境配置
一、安装Anaconda3
具体见我的其他文章:https://blog.csdn.net/hh571050143/article/details/119984613
二、创建一个yolov5的环境
具体见我的其他文章:https://blog.csdn.net/hh571050143/article/details/119984656
三、查看自己显卡适合的cuda与cudnn版本
具体见我的其他文章:https://blog.csdn.net/hh571050143/article/details/119984696?spm=1001.2014.3001.5501
四、下载相应的pytorch,cuda与cudnn版本
1.更改通道(为了下载的更快)
1.用txt形式打开C:\Users\57105该目录下.condarc文件
2.将如下代码全部复制进该txt
channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
2.下载相应的pytorch,cuda与cudnn
-1.进入官网寻找相应pytorch版本
官网链接:https://pytorch.org/get-started/locally/
根据自己的需求选择,如图所示,我们用cuda11.1为例
复制图中我标出的代码
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge
-2.打开cmd,激活你为yolov5配置的环境
activate 你的环境名
-3.下载pytorch
输入上一步复制的代码
正在下载
下载完成
3.查看环境中的配置
输入以下代码查看环境中的配置
conda list
以下为到这一步位置环境中应有的配置,主要看这两个
cudatoolkit 11.1.1 heb2d755_7 conda-forge
pytorch 1.9.0 py3.8_cuda11.1_cudnn8_0 pytorch
—
(这个cudatoolkit是包含在从官网下载的pytorch的包里的
所以不用另外下载一个CUDA)
—
(csdn_yolo) C:\Users\57105>conda list
packages in environment at C:\me\Anaconda3\envs\csdn_yolo:
Name Version Build Channel
blas 2.111 mkl conda-forge
blas-devel 3.9.0 11_win64_mkl conda-forge
ca-certificates 2021.7.5 haa95532_1 https://repo.anaconda.com/pkgs/main
certifi 2021.5.30 py38haa95532_0 https://repo.anaconda.com/pkgs/main
cudatoolkit 11.1.1 heb2d755_7 conda-forge
freetype 2.10.4 h546665d_1 conda-forge
intel-openmp 2021.3.0 h57928b3_3372 conda-forge
jpeg 9b hb83a4c4_2 defaults
libblas 3.9.0 11_win64_mkl conda-forge
libcblas 3.9.0 11_win64_mkl conda-forge
liblapack 3.9.0 11_win64_mkl conda-forge
liblapacke 3.9.0 11_win64_mkl conda-forge
libpng 1.6.37 h1d00b33_2 conda-forge
libtiff 4.2.0 hd0e1b90_0 defaults
libuv 1.42.0 h8ffe710_0 conda-forge
lz4-c 1.9.3 h8ffe710_1 conda-forge
m2w64-gcc-libgfortran 5.3.0 6 conda-forge
m2w64-gcc-libs 5.3.0 7 conda-forge
m2w64-gcc-libs-core 5.3.0 7 conda-forge
m2w64-gmp 6.1.0 2 conda-forge
m2w64-libwinpthread-git 5.0.0.4634.697f757 2 conda-forge
mkl 2021.3.0 hb70f87d_564 conda-forge
mkl-devel 2021.3.0 h57928b3_565 conda-forge
mkl-include 2021.3.0 hb70f87d_564 conda-forge
msys2-conda-epoch 20160418 1 conda-forge
ninja 1.10.2 h5362a0b_0 conda-forge
numpy 1.21.2 py38h089cfbf_0 conda-forge
olefile 0.46 pyh9f0ad1d_1 conda-forge
openssl 1.1.1k h8ffe710_1 conda-forge
pillow 8.3.1 py38h4fa10fc_0 defaults
pip 21.0.1 py38haa95532_0 https://repo.anaconda.com/pkgs/main
python 3.8.11 h6244533_1 https://repo.anaconda.com/pkgs/main
python_abi 3.8 2_cp38 conda-forge
pytorch 1.9.0 py3.8_cuda11.1_cudnn8_0 pytorch
setuptools 52.0.0 py38haa95532_0 https://repo.anaconda.com/pkgs/main
sqlite 3.36.0 h2bbff1b_0 https://repo.anaconda.com/pkgs/main
tbb 2021.3.0 h2d74725_0 conda-forge
tk 8.6.11 h8ffe710_0 conda-forge
torchaudio 0.9.0 py38 pytorch
torchvision 0.10.0 py38_cu111 pytorch
typing_extensions 3.10.0.0 pyha770c72_0 conda-forge
vc 14.2 h21ff451_1 https://repo.anaconda.com/pkgs/main
vs2015_runtime 14.27.29016 h5e58377_2 https://repo.anaconda.com/pkgs/main
wheel 0.37.0 pyhd3eb1b0_0 https://repo.anaconda.com/pkgs/main
wincertstore 0.2 py38_0 https://repo.anaconda.com/pkgs/main
xz 5.2.5 h62dcd97_1 conda-forge
zlib 1.2.11 h62dcd97_1010 conda-forge
zstd 1.4.9 h6255e5f_0 conda-forge
我们可以看到,环境中虽然有cuda和pytorch,但是并没有cudnn,所以我们还要下载一个对应版本的cudnn
输入
conda install cudnn==8.1.0
(该cudnn版本应与你的cuda对应,具体看上方教程)
4.出现问题,以及解决方法
安装cudnn时出现报错
可以看到,我们安装cudnn时报错了,这个错误可以更换源解决。
但是由于我们要安装的cudnn目前没有国内源,所以我们用以下方法解决
安装cudnn时出现报错解决方法
-1.查找cudnn版本
输入以下代码
anaconda search -t conda xxxx(你要下载的软件名)
在它给出来的一大堆版本中找到我们需要的版本
(上述cudnn与cuda对应表可以看到所需要的版本)
记录下版本名
-2.下载你所需要的版本
输入以下代码
conda install -c https://conda.anaconda.org/X(你的版本名)
conda install -c https://api.anaconda.org/fastchan cudnn
(版本名中的/用空格代替)
下载即可
-3.看看有没有下载成功
输入以下代码
conda list
可以看到我们的环境中多了一个cudnn
5.验证CUDA和duDNN是否可以正常使用
如下
python
import torch
a = torch.tensor(1.)
a.cuda()
from torch.backends import cudnn
cudnn.is_available()
cudnn.is_acceptable(a.cuda())
五、配置Yolov5相关环境
1.下载Yolov5
可以通过该链接下载
https://codechina.csdn.net/mirrors/ultralytics/yolov5?utm_source=csdn_github_accelerator
也可以通过我的百度云下载我正在使用的yolov5版本
链接:https://pan.baidu.com/s/1kbpvsZiTBtZjYB5LndOXNQ
提取码:V5V5
2.配置Yolov5所需要的环境
我们解压所下载的yolov5压缩包并打开
注意,yolov5文件要放在纯英文路径
找到一个名为requirements.txt的txt文件
复制这一段,如下
pip install -r requirements.txt
打开CMD,激活你所配置的环境
进入你解压好的yolov5文件路径
activate csdn_yolo
cd C:\me\yolov5-4.0\yolov5-4.0(cd到你自己安装yolov5的文件路径)
输入 pip install -r requirements.txt
那么我们yolov5所需要的环境就配置好了
3.下载Yolov5权重文件
链接:https://pan.baidu.com/s/19ug7l4BTFAmEAaSAYxhz0w
提取码:yolo
将该权重文件放置在yolov5文件内
六、测试Yolov5是否可以正常使用
1.下载pycharm
官网下载
https://www.jetbrains.com/pycharm/download/#section=windows
百度云下载
链接:https://pan.baidu.com/s/1BsZQ9mhaLD8Xru-5UQ9d3g
提取码:pypy
2.配置pycharm
打开pycharm
新建项目
选择yolov5文件路径
(这个coco128是我下载的官方训练模型测试集,不要在意)
选择环境我们配置好的环境
一路点击确定
3.测试yolov5是否可以正常使用
右键运行程序
可以看到我们的CUDA是正常使用的
运行完成,它告诉我们结果放在了exp里,我们点开来看看
4.测试yolov5时出现的错误以及解决方法
(1.)测试yolov5出现的错误
进入我们的\yolov5-4.0\runs\detect\exp文件夹
可以看到虽然有结果图片,但是并没有框出识别结果
(2.)解决方法
我们进入detect代码,在第53行加入
cudnn.benchmark = True
可以看到这句代码和第48行是一样的,
我们加入代码让detect不打开摄像头时也使cudnn.benchmark = True
运行程序
我们可以看到需要的时间变久了,这是因为它需要寻找合适的算法
总结
好像写的有点太长了,我可能会考虑把他分开写成几个独立的文章,训练模型以及训练自己的模型也写上