POJ 1050 To the Max(简单DP)

题目:http://poj.org/problem?id=1050

大致题意:

给出一个矩阵,求子矩阵中所有元素的和最大的那个值

大致思路:

求最大子段和代码及讲解:http://blog.csdn.net/hh__01/article/details/49205633
运用到求最大子段和的,将二维转换为一维来做
例如求以下矩阵的最大子矩阵元素和:
0 -2 -7 0
9 2 -6 2
当我们把第二行加到第一行时
9 0 -13 2
求出的最大子段为9,则为答案

代码:

#include <iostream>
using namespace std;
int data[101][101];
int temp[101];
int getMax(int n)//用来得到temp此时的最大子段和的值
{
    int sum = 0;
    int max = 0;
    for (int i = 1; i <= n; i++)
    {
        if (sum < 0)
        {
            sum = temp[i];
        }
        else
        {
            sum += temp[i];
        }
        if (max < sum)
        {
            max = sum;
        }
    }
    return max;
}
int main()
{
    int n;
    int max;//用来记录每行最大子段中最大的
    int sum;//用来求和,判断是否加到负数 
    while (scanf("%d", &n) != EOF)
    {
        max = 0;
        for (int i = 1; i <= n; i++)
        {
            for (int j = 1; j <= n; j++)
            {
                scanf("%d", &data[i][j]);
            }
        }
        for (int i = 1; i <= n; i++)
        {
            sum = 0;
            for (int j = 1; j <= n; j++)
            {
                temp[j] = 0;
            }
            for (int j = i; j <= n; j++)
            {
                //将第i行的数据都放入temp求最大子段的和,再将i+1和第i行对应的元素加起来都放入temp求
                //最大子段的和,直到加到最后一行,这样把多维转化为一维来求最大子段和
                for (int k = 1; k <= n; k++)
                {
                    temp[k] += data[j][k];
                }
                sum = getMax(n);
                if (max < sum)
                {
                    max = sum;
                }
            }
        }
        printf("%d", max);
    }
    return 0;
}
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值