【Block总结】EBlock,快速傅里叶变换(FFT)增强输入图像的幅度|即插即用|CVPR2025

论文信息

标题: DarkIR: Robust Low-Light Image Restoration
作者: Daniel Feijoo, Juan C. Benito, Alvaro Garcia, Marcos Conde
论文链接:https://arxiv.org/pdf/2412.13443
GitHub链接:https://github.com/cidautai/DarkIR
在这里插入图片描述

创新点

DarkIR提出了一种新的卷积神经网络(CNN)框架,旨在同时处理低光图像增强和去模糊任务。与现有方法通常分开处理这两项任务不同,DarkIR通过多任务学习的方式,利用图像退化之间的相关性来提高恢复效果。该模型在参数和计算量上均优于之前的方法,且在多个标准数据集(如LOLBlur、LOLv2和Real-LOLBlur)上取得了新的最先进结果。
在这里插入图片描述

方法

DarkIR的架构采用了编码器-解码器设计,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值