深度学习在虚拟助手与智能家居中的应用案例与技术实现

在这里插入图片描述

一、虚拟助手领域的应用
  1. 语音识别与语义理解

    • 技术实现:采用基于 P ( y ∣ x ) = ∏ t = 1 T P ( y t ∣ x ) P(y|x) = \prod_{t=1}^T P(y_t | x) P(yx)=t=1TP(ytx)的序列建模方法(如LSTM或Transformer),将语音信号转换为文本。
    • 案例:亚马逊Alexa通过端到端深度学习模型实现低延迟语音指令识别,支持多语言混合输入。
    • 代码示例(意图分类):
      from transformers import BertTokenizer, BertForSequenceClassification
      tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
      model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
      inputs = tokenizer("Turn on the lights", return_tensors="pt")
      outputs = model(**inputs)  # 输出意图类别概率分布
      
  2. 对话生成与上下文管理

    • 技术核心:使用注意力机制(如 A t t e n t i o n ( Q , K , V ) = s o f t m
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

悦观沧海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值