LMS Virtual.Lab二次开发:声学仿真理论基础准备(Python)

🍺相关文章汇总如下🍺:

1、简介

采用LMS Virtual.Lab Acoustics声学软件,可以直接打开CATIA V5的设计模型、或者间接导入其它CAD软件的三维模型,实现从声学模型创建、复杂边界条件加载、快速求解计算,直到计算结果评估、响应峰值定位、问题根源探究、以及快速修改预测的流程化声学仿真过程,为用户提供最完备的声学分析解决方案。

声学有限元仿真 主要用于模拟声压波在声介质中的生成、传播、辐射、吸收和反射。随着有限元软件的发展和人们对噪声问题的重视,声学有限元仿真在越来越多的行业得到广泛应用。

声音的物理特性:声功率、声强和声压。

2、声压

声压:声波在空气中传播时,空气的疏密程度会随声波而改变,因此,区域性的压强也会随之改变,此即为声压。声波存在时压强与无声波时压强间的差值。声波通过时,大气压强的逾量值。单位:Pa,帕斯卡。标量。声强与声压的关系:I=P2/ρC。其中:ρC——空气特性阻抗,ρC=415 N.s/m3。声压一般指的有效声压,也就是声压的方均根,对于平面声波有效声压是声压峰值的根号二分之一。声强是指单位时间通过单位面积的声能。

声压是指在声波传播过程中,空气压力相对于大气压力的变化,通常用符号p表示,单位为Pa。声波在空气中传播时形成压缩和膨胀的周期性变化,所以压力的增值是正负交替的。声压有瞬时声压、峰值声压和有效声压。瞬时声压是指空气中某点瞬间压力和大气压力的差值;峰值声压是指某一时间间隔内的最大瞬时声压;而有效声压是声压随时间变化的均方根值。最常用的是有效声压,它是声压计测量的基础。

当频率为l000 Hz时,正常人耳刚好能听到的声音声压值约为2×10-5 N/m2(即:2×10-5 Pa),称为基准声压或听阈声压。使人耳感到疼痛的声压值约为20 N/m2(即:20 Pa),称为痛阔声压。

声压级(SPL Sound Pressure Level ):是指以对数尺衡量有效声压相对于一个基准值的大小,用分贝(dB)来描述其与基准值的关系。人类的对于 1KHz 的声音的听阈(即产生听觉的最低声压)为 20µPa,通常以此作为声压级的基准值。

在这里插入图片描述
声音测量最常用的物理量是声压,但描述声压的大小通常用声压级(Sound Pressure Level,SPL)。人耳可听的声压范围为2×10^-5Pa到20Pa,对应的声压级范围为0~120dB,因此,引入声压级的概念易于描述线性变化很大的声压。

声压级计算公式:
L p = 20 ∗ l g ( p p 0 ) L_p=20*lg(\cfrac{p }{p_0}) Lp=20lg(p0p)
式中,
Lp:声压级(单位:分贝);
p:声压(单位:帕);
p0:基准声压,在空气中 p0=2×10的-5次方(帕),即20微帕 。

在这里插入图片描述
其中,pref表示1000Hz处人耳可听的最小声压幅值20μPa。上式中声压级计算所用的声压p一定是声压的均方根值(RMS),或者是声压的均方值(如果采用10倍的对数形式)。
在这里插入图片描述
在这里插入图片描述

3、声强

声强:是指单位时间内,声波通过垂直于传播方向单位面积的声能量,用符号I表示,单位为W/m2。声强描述了声能在空间的分布。

声强与声源发射的声功率有关:

  • 如果声源在没有边界的自由场向空间发射声波,在离声源半径为r的球面上各点的声强是相同的(此时称为球面波),且声强与声功率有如下关系:
    I = W 4 π ∗ r 2 I=\cfrac{W}{4\pi*r^2} I=4πr2W

由式可见,若声源发射的声功率不变,声场中各点的声强与距离的平方成反比。

  • 如果声源放在地平面上,声波只能向半空间辐射(此时称为平面波),
    声强与声功率的关系为:
    I = W 2 π ∗ r 2 I=\cfrac{W}{2\pi*r^2} I=2πr2W
  • 对于球面波和平面波,声压与声强的关系为:
    I = p 2 ρ ∗ C I=\cfrac{p^2 }{ρ*C} I=ρCp2
    式中,ρ为空气密度,c为声速。
    在这里插入图片描述

4、声功率

声功率:是指单位时间内,声波通过垂直于传播方向某特定面积的声能量,用符号W表示,单位为W。

声压虽然是噪声评价的一个重要物理参量,然而声压的大小与离声源的距离和测量时所处的环境直接相关,所以,不能简单地以声压来衡量一个声源的声辐射能量。而声功率可以用来衡量一个声源的声辐射能力,它是一个恒量。

声功率级计算公式:
L w = 10 ∗ l g ( W W 0 ) L_w=10*lg(\cfrac{W }{W_0}) Lw=10lg(W0W)
式中,
Lw:声功率级(单位:分贝);
W:声功率(单位:瓦);
W0:基准声功率,W0=10的-12次方(瓦),即1皮瓦。

声能功率不能直接测得,通常测声压换算而得。
声的压强即声强I=p^2/(ρc),或中p为有效声压ρ为空气密度c为空气中的声速。
声功率W=声强x面积
分贝,也称声强级L,表达式是L=lg(I/I0)(式中基准声压I0=10E-12(w/m^2,瓦/平米)。

声功率定义为声源在单位时间内向外辐射的声能,单位为W。与声压级相对应,声功率也存在声功率级。声功率级是声功率与参考声功率的相对量度,定义为
在这里插入图片描述
其中W为测量的声功率,W0=10^-12W为基准声功率。声功率是一个绝对量,只与声源有关,与其他无关,因此,它是声源的一个物理属性。
在这里插入图片描述

5、时域

时域(时间域,Time domain)是描述数学函数或物理信号对时间的关系。例如一个信号的时域波形可以表达信号随着时间的变化。是真实世界,是惟一实际存在的域。因为我们的经历都是在时域中发展和验证的,已经习惯于事件按时间的先后顺序地发生。而评估数字产品的性能时,通常在时域中进行分析,因为产品的性能最终就是在时域中测量的。

自变量是时间,即横轴是时间,纵轴是信号的变化。其动态信号x(t&#x

Python声学特提取是指使用Python编程语言来提取音频信号中的种声学特征。声学特征是对音频信号进行数分析和处理后得到的一些数值指标,可以用于音频信号的分类、识别、分析等任务。 在Python中,使用一些库和工具来进行声学特征提取,其中最常用的是Librosa和pyAudioAnalysis。 1. Librosa是一个用于音频和音乐信号处理的Python库,它提供了丰富的函数和工具来提取各种声学特征。例如,可以使用Librosa提取音频信号的时域特征(如时长、能量、过零率等)、频域特征(如梅尔频谱系数、色度谱等)以及其他高级特征(音调、节奏等)。Librosa还提供了可视化工具,可以将提取的特征可视化展示出来。 2. pyAudioAnalysis是另一个用于音信号处理和分析的Python库,它提供了一系列函数和工具来进行声学特征提取。pyAudioAnalysis支持多种特征提取方法,包括时域特征、频域特征、光谱特征、时频特征等。此外,pyAudioAnalysis还提供了一些器学习算法,可以用于音频信号的分类和识别。 使用这些库进行声学特征提取的步骤通常包括以下几个步骤: 1. 读取音频文件:使用Python库中的函数读取音频文件,将其转换为音频信号。 2. 预处理:对音频信号进行预处理,如去除噪声、平滑等。 3. 特征提取:使用相应的函数从音频信号中提取所需的声学特征。 4. 特征表示:将提取的特征表示为量或矩阵形式,以便后续处理和分析。 5. 可视化:可选步骤,将提取的特征可视化展示出来,以便更直观地理解和分析。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值