概率基础 · 联合概率 边缘概率 prior posterior likelihood

本文介绍了概率论的基础概念,包括联合概率、边缘概率及其在贝叶斯定理中的应用。联合概率是两个事件同时发生的概率,而边缘概率则是从联合概率中提取单个事件的概率。贝叶斯定理涉及到先验概率、后验概率和似然性,阐述了如何在已知观测结果的情况下更新对参数的信念。概率与似然之间的区别在于,概率是从固定参数看结果的可能性,而似然是从固定结果看参数的可能性。
摘要由CSDN通过智能技术生成


经常在机器学习课程中见到,但概念比较模糊的内容。

联合概率 (Joint Probability)

所有条件同时成立的概率。
P(a,b)
注意: P(a;b)表示a是随机变量,b是a这个随机变量分布的参数(比如正态分布中的均值 μ \mu μ和标准差 σ \sigma σ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值