1. 联合概率
假设有随机变量A与B,所谓联合概率,就是既满足 A 条件,又满足 B条件的概率,因为你是2维变量,所以需要考虑(A,B)两个变量一起变的情况。
A与B的联合概率表示为 P ( A ∩ B ) P(A\cap B) P(A∩B)或者 P ( A , B ) P(A,B) P(A,B)或者 P ( A B ) P(AB) P(AB)
这类包含多个条件且所有条件同时成立的概率成为联合概率。
2.边缘概率
边缘概率是相对于联合概率而言的的,虽然你有两个变量(x,y)但是你可以只考虑x或者y的分部,好像另外一个不存在一样,写作f(x)或者f(y)。
P
(
X
=
a
)
P(X=a)
P(X=a)或
P
(
Y
=
b
)
P(Y=b)
P(Y=b)这类仅与单个随机变量有关的概率,称为边缘概率。
3. 条件概率
通常,我们想知道某些事件发生时其它事件也发生的概率。我们将事件 B 发生时事件 A 也发生的条件概率写为 P ( A ∣ B ) P(A | B) P(A∣B),读作“在B的条件下A的概率”。
如果一个事件的概率不以任何方式影响另一个事件,则该事件被称为独立事件。以掷骰子且连续两次掷得 2 的概率为例。这些事件是独立的。
根据文氏图,可以清楚地看到,在事件B发生的情况下,事件A发生的条件概率就是:
P
(
A
∣
B
)
=
P
(
A
B
)
P
(
B
)
P(A|B)=\frac{P(AB)}{P(B)}
P(A∣B)=P(B)P(AB)
所以,
P
(
A
B
)
=
P
(
A
∣
B
)
P
(
B
)
P(AB)=P(A|B)P(B)
P(AB)=P(A∣B)P(B)
同理可得,
P
(
B
∣
A
)
=
P
(
A
B
)
P
(
A
)
P(B|A)=\frac{P(AB)}{P(A)}
P(B∣A)=P(A)P(AB)
所以,
P
(
A
B
)
=
P
(
B
∣
A
)
P
(
A
)
P(AB)=P(B|A)P(A)
P(AB)=P(B∣A)P(A)
所以,
P
(
A
∣
B
)
P
(
B
)
=
P
(
B
∣
A
)
P
(
A
)
P(A|B)P(B)=P(B|A)P(A)
P(A∣B)P(B)=P(B∣A)P(A)
所以,
P
(
A
∣
B
)
=
P
(
B
∣
A
)
P
(
A
)
P
(
B
)
P(A|B)=\frac {P(B|A)P(A)}{P(B)}
P(A∣B)=P(B)P(B∣A)P(A)
4. 全概率定理
事件 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An形成样本空间的一个分割;
事件 B B B可以分解成不相交的 n n n个事件的并,即: B = ( A 1 ⋂ B ) ⋃ ( A 2 ⋂ B ) . . . ⋃ ( A n ⋂ B ) B=(A_1\bigcap B) \bigcup(A_2 \bigcap B)...\bigcup(A_n \bigcap B) B=(A1⋂B)⋃(A2⋂B)...⋃(An⋂B)
利用可加公理,得到: P ( B ) = P ( A 1 ⋂ B ) ⋃ P ( A 2 ⋂ B ) . . . ⋃ P ( A n ⋂ B ) P(B)=P(A_1\bigcap B)\bigcup P(A_2 \bigcap B)...\bigcup P(A_n \bigcap B) P(B)=P(A1⋂B)⋃P(A2⋂B)...⋃P(An⋂B)
利用条件概率定义,我们知道, P ( A i ⋂ B ) = P ( A i ) P ( B ∣ A i ) P(A_i\bigcap B)=P(A_i)P(B|A_i) P(Ai⋂B)=P(Ai)P(B∣Ai),将之代入上式,得到:
P ( B ) = P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) + . . . + P ( A n ) P ( B ∣ A n ) P(B)=P(A_1)P(B|A_1)+P(A_2)P(B|A_2)+...+P(A_n)P(B|A_n) P(B)=P(A1)P(B∣A1)+P(A2)P(B∣A2)+...+P(An)P(B∣An)
这个定理的主要应用是直接计算B的概率有点难度,但是若条件概率 P ( B ∣ A i ) P(B|A_i) P(B∣Ai)是已知的或者很容易推导时,全概率定理就成了计算P的有力工具。
5. 贝叶斯准则
通常,事件 A A A在事件 B B B发生的条件下的概率,与事件 B B B在事件 A A A发生的条件下的概率是不一样的!然而这两者是有确定的关系,贝叶斯准则就是这种关系的描述。
全概率定理是与贝叶斯准则联系在一起的,贝叶斯准则将形如 P ( A ∣ B ) P(A|B) P(A∣B)的条件概率与形如 P ( B ∣ A ) P(B|A) P(B∣A)的条件概率联系了起来。
贝叶斯准则可以用来因果推理。比如,有许多原因,造成了某一结果。现在,假设我们能够观测到某一结果,希望推断出造成这个结果出现的原因。
现在设事件 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An是原因,而 B B B代表由原因引起的结果:
- P ( B ∣ A i ) P(B|A_i) P(B∣Ai)表示由原因 A i A_i Ai造成结果 B B B出现的概率;
- 当观察到结果 B B B的时候,我们希望反推出结果 B B B是由原因 A i A_i Ai造成的概率 P ( A i ∣ B ) P(A_i|B) P(Ai∣B);
- P ( A i ∣ B ) P(A_i|B) P(Ai∣B)为新近得到的信息 B B B之后, A i A_i Ai出现的概率,称之为后验概率,而原来的 A i A_i Ai就成为先验概率。