联合概率、边缘概率、条件概率

1. 联合概率

假设有随机变量A与B,所谓联合概率,就是既满足 A 条件,又满足 B条件的概率,因为你是2维变量,所以需要考虑(A,B)两个变量一起变的情况。

A与B的联合概率表示为 P ( A ∩ B ) P(A\cap B) P(AB)或者 P ( A , B ) P(A,B) P(A,B)或者 P ( A B ) P(AB) P(AB)

这类包含多个条件且所有条件同时成立的概率成为联合概率。

2.边缘概率

边缘概率是相对于联合概率而言的的,虽然你有两个变量(x,y)但是你可以只考虑x或者y的分部,好像另外一个不存在一样,写作f(x)或者f(y)。

P ( X = a ) P(X=a) P(X=a) P ( Y = b ) P(Y=b) P(Y=b)这类仅与单个随机变量有关的概率,称为边缘概率。
在这里插入图片描述

3. 条件概率

通常,我们想知道某些事件发生时其它事件也发生的概率。我们将事件 B 发生时事件 A 也发生的条件概率写为 P ( A ∣ B ) P(A | B) PAB,读作“在B的条件下A的概率”。

如果一个事件的概率不以任何方式影响另一个事件,则该事件被称为独立事件。以掷骰子且连续两次掷得 2 的概率为例。这些事件是独立的。
在这里插入图片描述
根据文氏图,可以清楚地看到,在事件B发生的情况下,事件A发生的条件概率就是:
P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B)=\frac{P(AB)}{P(B)} P(AB)=P(B)P(AB)
所以, P ( A B ) = P ( A ∣ B ) P ( B ) P(AB)=P(A|B)P(B) P(AB)=P(AB)P(B)
同理可得, P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)
所以, P ( A B ) = P ( B ∣ A ) P ( A ) P(AB)=P(B|A)P(A) P(AB)=P(BA)P(A)
所以, P ( A ∣ B ) P ( B ) = P ( B ∣ A ) P ( A ) P(A|B)P(B)=P(B|A)P(A) P(AB)P(B)=P(BA)P(A)
所以, P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B)=\frac {P(B|A)P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)


4. 全概率定理

分隔事件集合

事件 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An形成样本空间的一个分割;

事件 B B B可以分解成不相交的 n n n个事件的并,即: B = ( A 1 ⋂ B ) ⋃ ( A 2 ⋂ B ) . . . ⋃ ( A n ⋂ B ) B=(A_1\bigcap B) \bigcup(A_2 \bigcap B)...\bigcup(A_n \bigcap B) B=(A1B)(A2B)...(AnB)

利用可加公理,得到: P ( B ) = P ( A 1 ⋂ B ) ⋃ P ( A 2 ⋂ B ) . . . ⋃ P ( A n ⋂ B ) P(B)=P(A_1\bigcap B)\bigcup P(A_2 \bigcap B)...\bigcup P(A_n \bigcap B) P(B)=P(A1B)P(A2B)...P(AnB)

利用条件概率定义,我们知道, P ( A i ⋂ B ) = P ( A i ) P ( B ∣ A i ) P(A_i\bigcap B)=P(A_i)P(B|A_i) P(AiB)=P(Ai)P(BAi),将之代入上式,得到:

P ( B ) = P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) + . . . + P ( A n ) P ( B ∣ A n ) P(B)=P(A_1)P(B|A_1)+P(A_2)P(B|A_2)+...+P(A_n)P(B|A_n) P(B)=P(A1)P(BA1)+P(A2)P(BA2)+...+P(An)P(BAn)

这个定理的主要应用是直接计算B的概率有点难度,但是若条件概率 P ( B ∣ A i ) P(B|A_i) P(BAi)是已知的或者很容易推导时,全概率定理就成了计算P的有力工具。

5. 贝叶斯准则

通常,事件 A A A在事件 B B B发生的条件下的概率,与事件 B B B在事件 A A A发生的条件下的概率是不一样的!然而这两者是有确定的关系,贝叶斯准则就是这种关系的描述。

全概率定理是与贝叶斯准则联系在一起的,贝叶斯准则将形如 P ( A ∣ B ) P(A|B) P(AB)的条件概率与形如 P ( B ∣ A ) P(B|A) P(BA)的条件概率联系了起来。

贝叶斯准则可以用来因果推理。比如,有许多原因,造成了某一结果。现在,假设我们能够观测到某一结果,希望推断出造成这个结果出现的原因。

现在设事件 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An是原因,而 B B B代表由原因引起的结果:

  1. P ( B ∣ A i ) P(B|A_i) P(BAi)表示由原因 A i A_i Ai造成结果 B B B出现的概率;
  2. 当观察到结果 B B B的时候,我们希望反推出结果 B B B是由原因 A i A_i Ai造成的概率 P ( A i ∣ B ) P(A_i|B) P(AiB);
  3. P ( A i ∣ B ) P(A_i|B) P(AiB)为新近得到的信息 B B B之后, A i A_i Ai出现的概率,称之为后验概率,而原来的 A i A_i Ai就成为先验概率。
  • 9
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值