S变换计算过程(Stockwel transform)

看文献的过程中发现很多文章对于S变换的原理陈述不清,故做一个简单的思路整理,重点在于计算过程,很多严格的限制条件及数学语言就不在这里赘述了。

S变换的快速计算主要利用傅里叶卷积定理,即函数卷积的傅里叶变换是函数傅里叶变换的乘积。

首先,S变换的公式为:
S ( τ , f ) = ∫ − ∞ + ∞ x ( t ) w ( τ − t ) e − j 2 π f t d t S(\tau, f)=\int_{-\infty}^{+\infty} x(t) w(\tau-t) e^{-j 2 \pi f t} d t S(τ,f)=+x(t)w(τt)ej2πftdt
其中 x ( t ) x(t) x(t)是信号, w ( t ) w(t) w(t)是窗函数,S变换中窗函数为高斯窗。S变换计算思路如下:

  1. 将公式书写顺序改为:
    S ( τ , f ) = ∫ − ∞ + ∞ [ x ( t ) e − j 2 π f t ] [ w ( τ − t ) ] d t S(\tau, f)=\int_{-\infty}^{+\infty}[ x(t)e^{-j 2 \pi f t}] [w(\tau-t)] d t S(τ,f)=+[x(t)ej2πft][w(τt)]dt
    则可以将 S ( τ , f ) S(\tau, f) S(τ,f)看成是 h ( t ) = [ x ( t ) e − j 2 π f t ] h(t)=[ x(t)e^{-j 2 \pi f t}] h(t)=[x(t)ej2πft] w ( t ) w(t) w(t)的卷积
  2. 此时根据傅里叶卷积定理则:
    F [ S ( τ , f ) ] = F [ ∫ − ∞ + ∞ [ x ( t ) e − j 2 π f t ] [ w ( τ − t ) ] d t ] = F [ h ( t ) ∗ w ( t ) ] = H ( ω ) W ( ω ) F[S(\tau, f)]=F[\int_{-\infty}^{+\infty}[ x(t)e^{-j 2 \pi f t}] [w(\tau-t)] d t]=F[h(t)*w(t)]=H(\omega)W(\omega) F[S(τ,f)]=F[+[x(t)ej2πft][w(τt)]dt]=F[h(t)w(t)]=H(ω)W(ω)
    其中 F F F表示傅里叶变换, H ( ω ) H(\omega) H(ω) W ( ω ) W(\omega) W(ω)分别是 h ( t ) h(t) h(t) w ( t ) w(t) w(t)的傅里叶变换。
  3. 分别计算 h ( t ) = [ x ( t ) e − j 2 π f t ] h(t)=[ x(t)e^{-j 2 \pi f t}] h(t)=[x(t)ej2πft] w ( t ) w(t) w(t)的傅里叶变换,则:
    H ( ω ) = ∫ − ∞ + ∞ [ x ( t ) e − j 2 π f t ] e − j 2 π ω t d t = X ( f + ω ) H(\omega)=\int_{-\infty}^{+\infty}[ x(t)e^{-j 2 \pi f t}]e^{-j 2 \pi \omega t} d t=X(f+ \omega) H(ω)=+[x(t)ej2πft]ej2πωtdt=X(f+ω)
    W ( ω ) = ∫ − ∞ + ∞ [ w ( t ) ] e − j 2 π ω t d t W(\omega)=\int_{-\infty}^{+\infty}[w(t)]e^{-j 2 \pi \omega t} d t W(ω)=+[w(t)]ej2πωtdt
  4. S ( τ , f ) = F − 1 { F [ S ( τ , f ) ] } = F − 1 { H ( ω ) W ( ω ) } = F − 1 { X ( f + ω ) W ( ω ) } S(\tau, f)=F^{-1}\{F[S(\tau, f)]\}=F^{-1}\{H(\omega)W(\omega)\}=F^{-1}\{X(f+ \omega)W(\omega)\} S(τ,f)=F1{F[S(τ,f)]}=F1{H(ω)W(ω)}=F1{X(f+ω)W(ω)}

综上,计算过程可以简述为:
计算信号的傅里叶变换 X ( ω ) X(\omega) X(ω) → \to 计算窗函数的傅里叶变换 W ( ω ) W(\omega) W(ω) → \to 将信号傅里叶谱移频然后与窗函数傅里叶谱相乘得到 X ( f + ω ) W ( ω ) X(f+ \omega)W(\omega) X(f+ω)W(ω) → \to 傅里叶反变换。

  • 6
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
根据提供的引用内容,我们可以看到torchvision.transforms.Normalize是一个用于对图像进行标准化处理的变换操作。然而,Normalize操作本身并没有提供反变换的方法。因此,如果需要对经过Normalize处理的图像进行反变换,我们需要手动实现反标准化的过程。 反标准化的过程通常涉及到将标准化后的图像数据重新映射回原始的数据范围。具体的反标准化过程取决于标准化时所使用的均值和标准差。一种常见的反标准化方法是通过将标准化后的图像数据乘以标准差,然后再加上均值来实现反变换。 具体而言,如果我们使用Normalize操作将图像数据标准化为均值mean和标准差std,那么反标准化的过程可以通过以下公式实现: 原始图像 = 标准化后的图像 * std + mean 需要注意的是,反标准化的过程应该在将图像数据从Tensor转换回numpy数组之前进行。 因此,对于Normalize操作的反变换过程,可以使用上述公式来实现。 #### 引用[.reference_title] - *1* *2* *3* [torchvision.transform图片转变/数据增强方法总结](https://blog.csdn.net/weixin_43318626/article/details/105550683)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值