Spectral Clustering

Spectral Clustering是一种基于图论的聚类技术,通过构建相似度矩阵、度矩阵、拉普拉斯矩阵并进行归一化处理,然后计算特征值和特征向量,最终使用k-means进行降维聚类。文章介绍了每一步的具体操作,包括构建过程和计算特征值的方法。
摘要由CSDN通过智能技术生成

目录

什么是Spectral Clustering?

Spectral Clustering的分割方法

       第一步构建一个相似度矩阵

       第二步构建一个度矩阵

       第三步构建拉普拉斯矩阵L

       第四步归一化矩阵L

       第五步计算矩阵L的特征值和特征向量

关于如何计算特征值和特征向量


先贴出我借鉴的博客

  1. http://blog.pluskid.org/?p=287
  2. http://liuzhiqiangruc.iteye.com/blog/2117144
  3. http://www.cnblogs.com/wing1995/p/5014050.html

什么是Spectral Clustering?

       Spectral Clustering(SC, 谱聚类)是一种基于图论的聚类方法。将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的。


Spectral Clustering的分割方法

       谱聚类本身也提供了好几种不同的分割(cut)方法(mininum cut, ratio cut, nomarlized cut),每种方法对应一种优化目标。本文只介绍其中比较常见,也是比较实用,而且实现起来也比较经济的一种:Nomarlized cut.

       每条边的边权值为两个点的相似度。

                                       

       第一步我们先构建一个相似度矩阵

       这里我们为了方便理解其概念,将相连的点的边权值设为1,其余是0。

                                 

       第二步我们构建一个度矩阵

       度矩阵(某个点的度指的是与该点关联的点之间的总权数,比如A点的度为2),度矩阵是一个对角矩阵,也就是除了对角线有值以外,其他位置都是0。

                               

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值