目录
先贴出我借鉴的博客
- http://blog.pluskid.org/?p=287
- http://liuzhiqiangruc.iteye.com/blog/2117144
- http://www.cnblogs.com/wing1995/p/5014050.html
什么是Spectral Clustering?
Spectral Clustering(SC, 谱聚类)是一种基于图论的聚类方法。将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的。
Spectral Clustering的分割方法
谱聚类本身也提供了好几种不同的分割(cut)方法(mininum cut, ratio cut, nomarlized cut),每种方法对应一种优化目标。本文只介绍其中比较常见,也是比较实用,而且实现起来也比较经济的一种:Nomarlized cut.
每条边的边权值为两个点的相似度。
第一步我们先构建一个相似度矩阵
这里我们为了方便理解其概念,将相连的点的边权值设为1,其余是0。
第二步我们构建一个度矩阵
度矩阵(某个点的度指的是与该点关联的点之间的总权数,比如A点的度为2),度矩阵是一个对角矩阵,也就是除了对角线有值以外,其他位置都是0。