【大模型应用开发极简入门】构建新闻稿生成器:提示词的使用与基于事实的提示词

GPT-4和ChatGPT等LLM专用于生成文本。我们可以使用GPT-4和ChatGPT在各种场景中生成文本,举例如下。

  • 电子邮件
  • 合同或正式文档
  • 创意写作
  • 逐步行动计划
  • 头脑风暴
  • 广告
  • 职位描述

对于本项目,我们将创建一个工具,它可以根据一系列事实生成新闻稿。我们可以根据目标媒体和受众选择新闻稿的篇幅、语调和风格。

一. 提示词怎么写

这里主要描述prompt(提示词)的构建逻辑,因为大模型可以根据prompt的规定生成符合要求的文档。

  1. 给AI模型分配一个角色,并尽可能精确地描述任务。如下给AI模型分配的角色是记者助手:
prompt_role = "You are an assistant for journalists. \
    Your task is to write articles, based on the FACTS that are \
        given to you. \
    You should respect the instructions: the TONE, the LENGTH, \
        and the STYLE"
  1. 其他规定
  • prompt_role:角色的描述,以便大模型能够按照角色回答
  • FACTS:基于给定的事实数据来回答
  • TONE:回答风格:这里是informal
  • LENGTH:回答的单词数
  • STYLE:生成的文本格式:这里是blogpost
# 拼装messages,规定了prompt的格式:  
# prompt_role:角色的描述,以便大模型能够按照角色回答  
# FACTS:基于给定的事实数据来回答  
# TONE:回答风格:这里是informal  
# LENGTH:回答的单词数  
# STYLE:生成的文本格式:这里是blogpost  
def assist_journalist(  
    facts: List[str], tone: str, length_words: int, style: str  
):  
    facts = ", ".join(facts)  
    prompt =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

roman_日积跬步-终至千里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值