ChatGPT提示词生成器Prompt——简单应用

本文探讨了如何创建有效的提示词,以引导大型语言模型(LLM)执行任务,涉及角色扮演、任务类型明确、上下文提供、具体指令、输出格式和语言风格等方面,强调了提示词在引导模型产生高质量内容中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 任务要求

询问ChatGPT:“明天中午吃什么”

2. 直接询问ChatGPT

3. 使用提示词生成提示词

 

得到json格式的提示词,再使用这个提示词向json下达任务:

4. 词生词Prompt

【描述】提示词是一种输入给大型语言模型(LLM)的自然语言文本,用于引导LLM执行特定任务,如生成文本、回答问题或进行对话等。这些关键词或短语充当导航的纽带,帮助模型理解用户的意图和上下文,从而更有效地产生相应的输出。在设计提示词时,合理选择和组织词汇对于引导模型执行精确的任务至关重要。
【任务】根据[优秀的提示词应该具备的要点],使用要求的[输出语言]和[输出格式],按照[具体要求]生成一个优秀的提示词。
【具体要求】["明天中午吃什么"]。
【输出语言】中文
【输出格式】json
---
##优秀的提示词应该具备的要点:
1. 要求角色扮演:提示词可以指出要求LLM扮演的角色,如”你是一个经验丰富的健身教练“或”你是一个资深机器学习工程师“等。
2. 明确任务类型:提示词应该明确指出你希望LLM完成的任务类型,如“请生成一个关于春天的诗句”或“请回答这个问题”等。
3. 提供上下文信息:提示词可以包含与任务相关的背景信息或上下文,以帮助LLM更好地理解任务需求,如“请根据以下文章生成一个摘要”。
4. 使用具体的指令:提示词可以包含具体的指令或问题,如“请列出五个提高写作能力的方法”或“请概括这篇文章的主要观点”等。
5. 使用示例或样例:提示词中可以包含相关的示例或样例,如“请根据以下句子生成一个类似的句子”。
6. 使用具体的语言或词汇:提示词中可以使用具体的语言或词汇来引导LLM生成特定风格或类型的内容,如“请以幽默的方式回答这个问题”。
7. 明确期望的输出:提示词应明确指出你期望LLM生成何种[类型]或[格式]的输出,如“请生成一段新闻报道,包括标题、内容和引用”。
8. 提供反馈与调整机会:提示词中可以包含鼓励LLM进行调整和改进的元素,例如“如果需要,可以调整语言以更好地表达观点”或“欢迎在生成的内容中进行必要的修改”。
9. 考虑受众与用途:提示词应提供关于目标受众和内容用途的信息,以帮助LLM更好地调整生成的内容。例如,“请以专业的方式解释给非专业人士听”或“生成一篇适合教育用途的文章”。
10. 确定关键要点:提示词可以列举任务中的关键要点,以确保LLM在生成内容时不遗漏重要信息。这可以通过明确表示“请特别注意以下几个方面”或“确保包含这些关键信息”来实现。
11. 明确输出的语言:提示词中应该指明你期望LLM生成何种[语言]的输出。
##可选内容:
1. 强调创意与独创性:提示词应鼓励LLM在任务完成过程中展现创意和独特性,可以通过强调“请以你独特的视角表达”或“尽量创造性地回答问题”等方式来激发创新思维。
2. 指导语言风格与调性:提示词应包含对语言风格和调性的具体指导,以确保生成的内容符合预期的情感或专业性。例如,“请用正式的语调撰写一份商业报告”或“以轻松幽默的语言回答这个问题”。
3. 时间与长度限制:在提示词中明确任务所需生成内容的长度,以帮助LLM更好地管理时间和确保输出符合预期。例如,“生成一个不超过500字的短文”。
4. 注明参考资源:如果任务需要LLM参考特定资源或信息,提示词应提供相关的参考资料或指导,以确保生成的内容准确、可信。例如,“请查阅以下文献,并在回答中引用相关信息”。
5. 考虑多模态输出:对于需要多模态输出(如文本、图像、甚至音频)的任务,提示词应明确表达所期望的输出形式,以确保LLM在创作时考虑到多种媒体类型。例如,“请以文字和图表的形式解释以下数据”。
6. 考虑是否要求用户输入:在某些情况下,提示词可能需要LLM获取用户的输入或反馈,以便更好地完成任务,比如进行[翻译]任务时。此时要引导用户输入,例如,扮演翻译角色时,接收到该任务后只输出“我已了解你的需求,请输入需要我翻译的文本”,之后以连续对话的形式完成任务,当用户输入内容之后再执行任务。
<think>嗯,用户想了解如何生成AI提示词或者找相关的方法和工具。首先,我得回忆一下之前学过的知识,可能还要参考他们提供的引用内容。比如引用[1]提到了AI辅助提示词生成技术,能自动生成高质量、多样化的提示词,提升模型性能。还有引用[2]说提示词有方法偷懒,用魔法打败魔法,可能是指用AI生成提示词本身? 那用户可能是个刚接触AI的小白,需要简单易懂的方法和工具推荐。首先,我应该先解释基本方法,比如角色设定、结构化提示词这些常见技巧,然后介绍一些工具,比如ChatGPT本身、Midjourney的提示词生成器等。可能需要分步骤说明,比如明确需求、分解任务、迭代优化等,这样用户更容易理解。 还要注意格式,用户提到的数学表达式要用$...$,但这个问题可能涉及不多。不过得确保回答结构清晰,按照用户的要求分点回答,并生成相关问题。比如用户的问题是关于方法和工具,所以回答里需要包括基本方法、工具推荐、步骤,然后相关问题可能涉及优化、工具对比、应用场景等。 另外,用户提供的引用里提到自动生成提示词的技术,可能需要提到像PromptBase这样的平台,或者HuggingFace的PromptGenerator模型。同时,迭代优化部分可以引用引用[1]中的步骤4.2,说明步骤的重要性。最后,可能需要提醒用户关注后续内容,比如引用[3]里的关注建议,但这里可能不需要直接提到,而是自然地引导。 需要检查是否有遗漏的关键点,比如是否覆盖了用户可能的深层需求,比如他们是否想了解如何评估提示词的效果,或者如何将生成提示词应用到具体模型中。不过根据问题,主要焦点在生成方法和工具上,所以保持回答集中在这部分。确保推荐的工具是当前流行且用户友好的,适合不同需求,比如免费和付费工具都有提及。最后生成的相关问题要围绕主题展开,帮助用户进一步探索。</think>### AI提示词生成方法与工具指南 #### 一、基础方法 1. **角色设定法** 通过为AI赋予特定角色生成更专业的提示词,例如: "你是一位经验丰富的编剧,请为科幻电影生成10个包含时间循环主题的剧情框架" 2. **结构化模板** 使用固定格式提升生成效果: $$目标行为+内容类型+具体要求+格式示例$$ 例:"生成5个小红书风格的宠物用品文案,要求包含emoji,模仿以下案例:🐾让爱宠爱上洗澡时光!" 3. **迭代优化法** 基于初始结果持续改进,如: 第一轮:"生成古诗赏析提示词" → 第二轮:"优化为包含对比分析要求的提示词"[^1] #### 二、推荐工具 | 工具类型 | 代表工具 | 特点 | |---------|--------|------| | 通用AI平台 | ChatGPT, Claude | 通过对话迭代生成提示词[^2] | | 专业提示库 | PromptBase | 提供已验证的优质提示模板 | | 图像生成专用 | Midjourney Prompt Helper | 可视化参数调整 | | 开发工具 | HuggingFace PromptGenerator | 支持API调用的开源方案 | #### 三、生成步骤 1. **需求明确化** 使用5W1H法则梳理需求:$Who/What/Where/When/Why/How$ 2. **任务分解** 将复杂需求拆解为原子化指令,例如: "先分析目标受众特征 → 再确定内容调性 → 最后生成具体文案" 3. **参数设置** 为关键要素添加权重标记: "强调{科技创新},弱化{技术术语},必须包含{用户案例}" 4. **效果验证** 通过A/B测试对比不同提示词生成结果,推荐使用以下评估矩阵: $$评分=0.4×相关性+0.3×创新性+0.3×可操作性$$ : 通过上述原理,AI辅助提示词生成技术能够自动生成高质量、多样化的提示词,从而提升模型的生成性能。4.2 AI辅助提示词生成的步骤 [^2]: 刚开始接触AI的小白总是会觉得提示词很难,其实写提示词是有方法偷懒的——"用魔法打败魔法"
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值