特征值 特征向量(题型)

  • 求特征值和特征向量

注:写可逆矩阵,把对角矩阵也写在一旁,和特征值一一对应


  • 特征向量的表示法


  • 特征向量你会表示吗????


  • 搭配转置 正交 夹逼求秩


  • 幂等阵(仅是平方)


  • 简单证明题

AB型,证明两个矩阵有相同的特征值
(1)证明有相同的特征方程
(2)用定义求

证明可对角化(n重特征值下有n重根?)


  • 特征值少写


  • 计算大题(四类)

出错点:

1.一般型(定义法/A ξ = λ ξ)

2.求特征值→特征向量→可逆矩阵→连乘n次幂(可拆分分块矩阵,转化成多项式的n次幂)

3.满足是实对称矩阵→正交化(用转置代替求逆,这里简单)→连乘(计算量在这里)

4.已知A,B,A~B,求可逆矩阵P...



  • 相似对角阵的应用(易混淆和线性方程组搭配)

1.实对称矩阵含n个线性无关的特征向量,当回代求线性方程组的解的时候,求的是线性方程组的基础解系(线性无关),保证了都是线性无关的特征向量,因此不需要添加至少
2.普通矩阵未必相似于对角矩阵,所以有可能会在相同的特征值下出现线性相关的特征向量,当回代求线性方程组的解的时候,求的是线性方程组的基础解系(线性无关),因此重根数需要添加至少
3.幂等阵两个特征值λ=0或λ=1


  • 矩阵是否相似于对角矩阵的判别


  • 其他


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值