正态分布(高斯分布)的由来(公式推导)

1809年,高斯在研究《天体运动理论》的过程中发现其中的误差分布是正态分布。
比较接近原著的推导可以参考:https://zhuanlan.zhihu.com/p/387653090,但原著中高斯的数学直觉太强,有点难以理解,个人认为从以下方式理解更容易理解,故分享。

设误差密度函数为f(x),有n个独立观测值x1, x2, … , xn,真值为X。f(x)表示误差为x的概率,而误差=观测值-真值。假设每次观测都是独立且随机的,高斯认为误差密度函数f(x)应具有以下特点:

  1. f(x)为连续函数;
  2. x=0 时,f(x)应有最大值;
  3. x→∞ 时,f(x)→0;
  4. 从 x=0 开始,f(x)向两侧逐渐趋近于0;
  5. ∫ f(x) = 1,即f(x)在实数域R上的积分为1;

以下几点,高斯在原书中没有明确提到,但根据上面5点,可以认为是他的潜在假定:

  1. f(x)关于 x=0 处对称,即 f(x) = f(-x),是偶函数;
  2. [-∞, 0],f(x) 单调递增;
  3. [0, +∞],f(x) 单调递减;
  4. f(x) 恒大于0;
  5. f(x) 在实数域R上处处可导。

极大似然函数为: L ( x ) = f ( x 1 − X ) f ( x 2 − X ) . . . f ( x n − X ) L(x) = f(x_1-X)f(x_2-X)...f(x_n-X) L(x)=f(x1X)f(x2X)...f(xnX),我们希望L(x)最大,此时导数为0,即求令L(x)最大的f(x)。为了方便计算,做对数转换:

ln ⁡ L ( x ) = ∑ i = 1 n ln ⁡ f ( x i − X ) \ln{L(x)} = \sum_{i=1}^{n}\ln{f(x_i-X)} lnL(x)=i=1nlnf(xiX)

再对两边求导:

d ln ⁡ L ( x ) d x = − ∑ i = 1 n f ′ ( x i − X ) f ( x i − X ) = 0 \frac{d\ln{L(x)}}{dx} = -\sum_{i=1}^{n} \frac{f^{\prime}(x_i-X)}{f(x_i-X)} = 0 dxdlnL(x)=i=1nf(xiX)f(xiX)=0,我们希望求L(x)的最大值,所以令其导数为0。

g ( x ) = f ′ ( x ) f ( x ) g(x) = \frac{f^{\prime}(x)}{f(x)} g(x)=f(x)f(x),则 ∑ i = 1 n g ( x i − X ) = 0 \sum_{i=1}^{n} g(x_i-X) = 0 i=1ng(xiX)=0,根据“高斯关于误差函数的设定”可知,g(x)是实数域R上的奇函数。可将 ∑ i = 1 n g ( x i − X ) \sum_{i=1}^{n} g(x_i-X) i=1ng(xiX)看成一个多元函数,现欲求多元函数的极值点,所以希望对所有参数的偏导都为0。此时高斯假设真值X的估计为 x ˉ \bar{x} xˉ,则有以下方程组:

g ′ ( x 1 − x ˉ ) ( 1 − 1 n ) + g ′ ( x 2 − x ˉ ) ( − 1 n ) + . . . + g ′ ( x n − x ˉ ) ( − 1 n ) = 0 g^{\prime}(x_1-\bar{x})(1-\frac{1}{n}) + g^{\prime}(x_2-\bar{x})(-\frac{1}{n}) + ... + g^{\prime}(x_n-\bar{x})(-\frac{1}{n}) = 0 g(x1xˉ)(1n1)+g(x2xˉ)(n1)+...+g(xnxˉ)(n1)=0
g ′ ( x 1 − x ˉ ) ( − 1 n ) + g ′ ( x 2 − x ˉ ) ( 1 − 1 n ) + . . . + g ′ ( x n − x ˉ ) ( − 1 n ) = 0 g^{\prime}(x_1-\bar{x})(-\frac{1}{n}) + g^{\prime}(x_2-\bar{x})(1-\frac{1}{n}) + ... + g^{\prime}(x_n-\bar{x})(-\frac{1}{n}) = 0 g(x1xˉ)(n1)+g(x2xˉ)(1n1)+...+g(xnxˉ)(n1)=0

g ′ ( x 1 − x ˉ ) ( − 1 n ) + g ′ ( x 2 − x ˉ ) ( − 1 n ) + . . . + g ′ ( x n − x ˉ ) ( 1 − 1 n ) = 0 g^{\prime}(x_1-\bar{x})(-\frac{1}{n}) + g^{\prime}(x_2-\bar{x})(-\frac{1}{n}) + ... + g^{\prime}(x_n-\bar{x})(1-\frac{1}{n}) = 0 g(x1xˉ)(n1)+g(x2xˉ)(n1)+...+g(xnxˉ)(1n1)=0

利用齐次线性方程组解得: x = C ( 1 , 1 , . . . , 1 ) ⊤ x = C(1,1,...,1)^{\top} x=C(1,1,...,1)

g ′ ( x 1 − x ˉ ) = g ′ ( x 2 − x ˉ ) = . . . = g ′ ( x n − x ˉ ) = C g^{\prime}(x_1-\bar{x}) = g^{\prime}(x_2-\bar{x}) = ... = g^{\prime}(x_n-\bar{x}) = C g(x1xˉ)=g(x2xˉ)=...=g(xnxˉ)=C

由于g(x)导数为C,则设 g ( x ) = C x + b g(x) = Cx + b g(x)=Cx+b

由于 ∑ i = 1 n g ( x i − X ) = ∑ i = 1 n C ( x i − x ˉ ) + n b = 0 \sum_{i=1}^{n} g(x_i-X) = \sum_{i=1}^{n}C(x_i-\bar{x}) + nb = 0 i=1ng(xiX)=i=1nC(xixˉ)+nb=0,所以 b = 0 b = 0 b=0

可得 f ′ ( x ) f ( x ) = C x \frac{f^{\prime}(x)}{f(x)} = Cx f(x)f(x)=Cx,则 f ( x ) = k e 1 2 C x 2 f(x) = k e^{\frac{1}{2}Cx^2} f(x)=ke21Cx2

欲使 ∫ − ∞ + ∞ f ( x ) d x = 1 \int_{-\infty}^{+\infty}f(x) dx = 1 +f(x)dx=1,求得 C = − 1 σ 2 C = -\frac{1}{\sigma^2} C=σ21

利用 ∫ − ∞ + ∞ e − x 2 d x = π \int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi} +ex2dx=π ,求得 k = 1 2 π σ k = \frac{1}{\sqrt{2\pi}\sigma} k=2π σ1

最后得正态分布概率分布函数: f ( x ) = 1 2 π σ e − x 2 2 σ 2 f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}} f(x)=2π σ1e2σ2x2

  • 4
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
贝叶斯估计是一种参数估计的方法,它结合了先验概率和观测数据来得出对参数的估计值。对于正态分布的均值的贝叶斯估计公式推导如下: 设原始数据的样本集合为X={x1, x2, ..., xn},假设这些样本是独立同分布的,并服从正态分布N(μ, σ^2)。其中μ为均值,σ^2为方差,我们的目标是对均值μ进行估计。 首先,我们引入先验概率密度函数p(μ),表示对均值μ的预先假设。一般我们使用无信息先验,即假设μ的先验服从一个较为平坦的概率分布,比如均匀分布或者高斯分布。 根据贝叶斯定理,可以得到参数μ的后验概率分布公式为: p(μ|X) = p(X|μ) * p(μ) / p(X) 其中p(X|μ)为似然函数,表示给定μ下,样本X出现的概率;p(μ)为先验概率密度函数,表示对μ的预先假设;p(X)为归一化常数,用于保证后验概率的和为1。 假设样本X是独立同分布的,那么似然函数可以表示为: p(X|μ) = p(x1|μ) * p(x2|μ) * ... * p(xn|μ) 由于样本X的每一个观测值x都服从正态分布N(μ, σ^2),故似然函数可以写成: p(X|μ) = (1/√(2πσ^2))^n * exp(-(x1-μ)^2/(2σ^2)) * exp(-(x2-μ)^2/(2σ^2)) * ... * exp(-(xn-μ)^2/(2σ^2)) 然后,我们将上述公式带入到贝叶斯定理的后验概率分布公式中,得到: p(μ|X) = (1/√(2πσ^2))^n * exp(-(x1-μ)^2/(2σ^2)) * exp(-(x2-μ)^2/(2σ^2)) * ... * exp(-(xn-μ)^2/(2σ^2)) * p(μ) / p(X) 其中p(μ)为先验概率密度函数,p(X)为归一化常数,对于计算μ的贝叶斯估计值并不重要,故我们可以忽略。 最后,我们通过求解使得后验概率分布达到最大的μ的值来估计真实的均值μ。一般可以通过对概率分布取对数,然后对μ求导等方法来求解最大化的问题。 以上就是对正态分布均值的贝叶斯估计公式的详细推导过程。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值