【统计学习方法】高斯分布公式推导

1 基本概念准备

1.1 扇形计算公式

\Delta \sigma = \frac{\Delta \theta r^2}{2}

1.2 二重积分用极坐标表示

\Delta \sigma_k =\frac{(r+\Delta r)^2 \Delta \theta - r^2\Delta \theta}{2} = \frac{r \Delta r \Delta \theta+\Delta r^2 \Delta \theta}{2} \approx \frac{r \Delta r \Delta \theta}{2}  (略去高阶无穷小)

所以 d\sigma = rdrd\theta

1.3 一阶矩和二阶矩

一阶矩就是期望值,换句话说就是平均数(离散随机变量很好理解,连续的可以类比一下)。举例:xy坐标系中,x取大于零的整数,y1, y2, ...,yn 对应x=1, 2,..., n的值,现在我要对y求期望,就是所有y累加除以n,也就是y的均值。

此时y的均值我可以在坐标系中画一条线,我会发现所有的点都在这条线的两边。如果是中心矩我就会用每个值减去均值z=yn-y均作为一个新的序列z1, z2, ..., zn,再对z求期望,这时我会发现均值为零(即在坐标轴y上)。一阶矩只有一阶非中心矩,因为一阶中心矩永远等于零。

二阶(非中心)矩就是对变量的平方求期望,二阶中心矩就是对随机变量与均值(期望)的差的平方求期望。为什么要用平方,因为如果序列中有负数就会产生较大波动,而平方运算就好像对序列添加了绝对值,这样更能体现偏离均值的范围。

2 高斯分布公式

2.1  高斯概率密度函数的的积分

令 I = \int^{+\infty}_{-\infty} e^{\frac{-x ^2}{2\sigma^2}}dx

I^2 = \int_{-\infty }^{+\infty } e^{-\frac{x ^2+y^2}{2\sigma^2}}dxdy

用极坐标表示:

\left \{\begin { matrix} x=rcos\theta \\y =rsin\theta \\ \end{matrix}\right.

则:

I^2 =\int ^{2\pi}_{0} \int^{+\infty}_{0}e^-{\frac{r^2}{2\sigma^2}}rdrd\theta = 2\pi\int^{+\infty}_{0}e^{-\frac{u}{2\sigma^2}}\frac{1}{2}du = \pi e^{-\frac{u}{2 \sigma^2}}(-2\sigma^2)|^{\infty}_{0}

 

I^2 = 2\pi\sigma^2

 

所以:

\int^{+\infty }_{-\infty} N(x | \mu, \sigma) dx = \frac{1}{2\pi \sigma^2} 2\pi \sigma^2 = 1

 

2.2 高斯分布的期望

E(x) = \int^{+\infty}_{-\infty} x N(x|\mu,\sigma)dx = \int^{+\infty}_{-\infty} x \frac{1}{\sqrt{2\pi}\sigma}e^{\frac{(\mu -x)^2}{2\pi \sigma^2}}dx

x = x -\mu

则:

E(x) = \int^{+\infty}_{-\infty} x \frac{1}{\sqrt{2\pi}\sigma}e^{\frac{(x)^2}{2\pi \sigma^2}}dx + \int^{+\infty}_{-\infty} \mu \frac{1}{\sqrt{2\pi}\sigma}e^{\frac{(x)^2}{2\pi \sigma^2}}dx

这里\int^{+\infty}_{-\infty} x \frac{1}{\sqrt{2\pi}\sigma}e^{\frac{(x)^2}{2\pi \sigma^2}}dx为奇函数,所以积分结果为0

所以:

E(x) =\mu \int^{+\infty}_{-\infty} \frac{1}{\sqrt{2\pi}\sigma}e^{\frac{(x)^2}{2\pi \sigma^2}}dx = \mu

 

 

这里

参考:

高斯分布期望的推导

高斯分布归一化、期望、二阶矩、方差推导证明

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值