VS中C++语言调用gurobi求解器

1、创建空项目,并建立一个cpp

2、设置debug   x64

3、c/c++   常规   附加包含目录

F:\programmsoftware\Groubi\win64\include

4、链接器   常规  附加库目录

F:\programmsoftware\Groubi\win64\lib

5、链接器   输入  附加依赖项  gurobi110.lib   gurobi_c++mdd2017.lib   这个文件需要看自己的gurobi安装目录下lib里的数字

6、使用测试代码测试

/* Copyright 2023, Gurobi Optimization, LLC */

/* This example formulates and solves the following simple QP model:

     minimize    x^2 + x*y + y^2 + y*z + z^2 + 2 x
     subject to  x + 2 y + 3 z >= 4
                 x +   y       >= 1
                 x, y, z non-negative

   It solves it once as a continuous model, and once as an integer model.
*/

#include "gurobi_c++.h"
using namespace std;

int  main(int   argc, char* argv[])
{
    try {
        GRBEnv env = GRBEnv();

        GRBModel model = GRBModel(env);

        // Create variables

        GRBVar x = model.addVar(0.0, 1.0, 0.0, GRB_CONTINUOUS, "x");
        GRBVar y = model.addVar(0.0, 1.0, 0.0, GRB_CONTINUOUS, "y");
        GRBVar z = model.addVar(0.0, 1.0, 0.0, GRB_CONTINUOUS, "z");

        // Set objective

        GRBQuadExpr obj = x * x + x * y + y * y + y * z + z * z + 2 * x;
        model.setObjective(obj);

        // Add constraint: x + 2 y + 3 z >= 4

        model.addConstr(x + 2 * y + 3 * z >= 4, "c0");

        // Add constraint: x + y >= 1

        model.addConstr(x + y >= 1, "c1");

        // Optimize model

        model.optimize();

        cout << x.get(GRB_StringAttr_VarName) << " "
            << x.get(GRB_DoubleAttr_X) << endl;
        cout << y.get(GRB_StringAttr_VarName) << " "
            << y.get(GRB_DoubleAttr_X) << endl;
        cout << z.get(GRB_StringAttr_VarName) << " "
            << z.get(GRB_DoubleAttr_X) << endl;

        cout << "Obj: " << model.get(GRB_DoubleAttr_ObjVal) << endl;

        // Change variable types to integer

        x.set(GRB_CharAttr_VType, GRB_INTEGER);
        y.set(GRB_CharAttr_VType, GRB_INTEGER);
        z.set(GRB_CharAttr_VType, GRB_INTEGER);

        // Optimize model

        model.optimize();

        cout << x.get(GRB_StringAttr_VarName) << " "
            << x.get(GRB_DoubleAttr_X) << endl;
        cout << y.get(GRB_StringAttr_VarName) << " "
            << y.get(GRB_DoubleAttr_X) << endl;
        cout << z.get(GRB_StringAttr_VarName) << " "
            << z.get(GRB_DoubleAttr_X) << endl;

        cout << "Obj: " << model.get(GRB_DoubleAttr_ObjVal) << endl;

    }
    catch (GRBException e) {
        cout << "Error code = " << e.getErrorCode() << endl;
        cout << e.getMessage() << endl;
    }
    catch (...) {
        cout << "Exception during optimization" << endl;
    }

    return 0;
}

7、结果如下

Gurobi Optimizer version 11.0.0 build v11.0.0rc2 (win64 - Windows 11.0 (22621.2))

CPU model: 12th Gen Intel(R) Core(TM) i9-12900H, instruction set [SSE2|AVX|AVX2]
Thread count: 14 physical cores, 20 logical processors, using up to 20 threads

Optimize a model with 2 rows, 3 columns and 5 nonzeros
Model fingerprint: 0xc501370b
Model has 5 quadratic objective terms
Coefficient statistics:
  Matrix range     [1e+00, 3e+00]
  Objective range  [2e+00, 2e+00]
  QObjective range [2e+00, 2e+00]
  Bounds range     [1e+00, 1e+00]
  RHS range        [1e+00, 4e+00]
Presolve time: 0.00s
Presolved: 2 rows, 3 columns, 5 nonzeros
Presolved model has 5 quadratic objective terms
Ordering time: 0.00s

Barrier statistics:
 Free vars  : 2
 AA' NZ     : 6.000e+00
 Factor NZ  : 1.000e+01
 Factor Ops : 3.000e+01 (less than 1 second per iteration)
 Threads    : 1

                  Objective                Residual
Iter       Primal          Dual         Primal    Dual     Compl     Time
   0   1.69015022e+05 -1.71012100e+05  1.50e+03 3.33e+02  1.00e+06     0s
   1   3.60255402e+04 -3.91306233e+04  2.28e+02 3.82e+01  1.20e+05     0s
   2   4.14685168e+00 -4.40925173e+03  1.80e+00 4.00e-01  1.83e+03     0s
   3   2.81937163e+00 -1.92736174e+03  1.80e-06 4.00e-07  2.41e+02     0s
   4   2.81628339e+00 -1.81287557e-01  8.60e-10 1.91e-10  3.75e-01     0s
   5   2.26977145e+00  2.06670895e+00  6.89e-12 1.53e-12  2.54e-02     0s
   6   2.11498124e+00  2.11029644e+00  0.00e+00 2.22e-16  5.86e-04     0s
   7   2.11111498e+00  2.11111030e+00  0.00e+00 2.50e-16  5.85e-07     0s
   8   2.11111111e+00  2.11111111e+00  0.00e+00 4.62e-17  5.86e-10     0s

Barrier solved model in 8 iterations and 0.00 seconds (0.00 work units)
Optimal objective 2.11111111e+00

x 3.255e-09
y 1
z 0.666667
Obj: 2.11111
Gurobi Optimizer version 11.0.0 build v11.0.0rc2 (win64 - Windows 11.0 (22621.2))

CPU model: 12th Gen Intel(R) Core(TM) i9-12900H, instruction set [SSE2|AVX|AVX2]
Thread count: 14 physical cores, 20 logical processors, using up to 20 threads

Optimize a model with 2 rows, 3 columns and 5 nonzeros
Model fingerprint: 0x026954d2
Model has 5 quadratic objective terms
Variable types: 0 continuous, 3 integer (0 binary)
Coefficient statistics:
  Matrix range     [1e+00, 3e+00]
  Objective range  [2e+00, 2e+00]
  QObjective range [2e+00, 2e+00]
  Bounds range     [1e+00, 1e+00]
  RHS range        [1e+00, 4e+00]
Found heuristic solution: objective 7.0000000
Presolve removed 1 rows and 1 columns
Presolve time: 0.00s
Presolved: 2 rows, 3 columns, 5 nonzeros
Variable types: 0 continuous, 3 integer (3 binary)
Found heuristic solution: objective 3.0000000

Explored 0 nodes (0 simplex iterations) in 0.00 seconds (0.00 work units)
Thread count was 20 (of 20 available processors)

Solution count 2: 3 7

Optimal solution found (tolerance 1.00e-04)
Best objective 3.000000000000e+00, best bound 3.000000000000e+00, gap 0.0000%
x 0
y 1
z 1
Obj: 3

E:\vs_project博\gurobiTest\x64\Debug\gurobiTest.exe (进程 37404)已退出,代码为 0。
要在调试停止时自动关闭控制台,请启用“工具”->“选项”->“调试”->“调试停止时自动关闭控制台”。
按任意键关闭此窗口. . .

  • 9
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值