列生成(DW分解)与线性松弛解的质量证明

        对于最小化问题,通过列生成获得的下界不差于线性松弛获得的下界,原因可以从多方面解释,本文从可行域的角度解释这一问题。

        首先对于已有整数规划数学模型记为MP1

[MP1] min\sum_{i}^{N} z_{i}\cdot x_{i}

st. A_{i,j}\cdot x_{i}=B_{i}

C_{i,j}\cdot x_{i}=D_{i}

x_{i}={0,1}

       以上模型为原模型,将MP1中的x_{i}松弛为大于等于0小于等于1, 可以得到它的线性松池模型,其可行域为Conv\begin{pmatrix} A_{i,j}\cdot x_{i}=B_{i}\cup C_{i,j}\cdot x_{i}=D_{i} & \end{pmatrix}

        对于第二条约束C_{i,j}\cdot x_{i}=D_{i},对应一个超平面P=\begin{Bmatrix}C_{i,j}\cdot x_{i}=D_{i}, & \end{Bmatrix},设该超平面的极点为v_{i},假设超平面有界,则超平面中的每一个点可以用其极点的凸组合表示,即为:

x_{i}=\sum_{j}^{}\lambda _{i}\cdot v_{i},

假设有多个超平面,则为x_{i}=\sum_{j}^{}\lambda _{i,j}\cdot v_{i,j},其中j表示超平面的索引。

        使用凸组合替换原问题中的决策遍历x,得到DW分解后的主问题MP2:

[MP2] min\sum_{i}^{N} z_{i}\cdot\sum_{j}^{}\lambda _{i}\cdot v_{i}

st. A_{i,j}\cdot \sum_{j}^{}\lambda _{i}\cdot v_{i}=B_{i}

\sum_{j}^{}\lambda _{i}\c=1

其中,此时的可行域为Conv\begin{pmatrix} A_{i,j}\cdot x_{i}=B_{i}\cup Conv\begin{Bmatrix} C_{i,j}\cdot x_{i}=D_{i}& \end{Bmatrix} & \end{pmatrix},该可行域小于等于原问题的可行域,所以列生成获得的下界一定不差于线性松池的下界。

此时DW分解的子问题为SP1:

SP1: z_{i}-\pi _{i}\cdot y_{i}

C_{i,j}\cdot y_{i}=D_{i}

如果列生成的原问题是按列建模的,不需要经过DW分解,则得到解与线性松弛是一致的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值