协同过滤算法
1-1基本概述
基于用户或物品的推荐算法,人以群分,物以类聚
(1) 基于用户,“人以群分”
孩童A和孩童B是“志同道合”的基友(相似度很高),将A喜欢的物品推荐给B是合理的
(2)基于物品,“物以类聚”
在无先验知识的前提下,根据孩童A所喜欢物品的相似性,将相似物品推荐给A,是合理的
(3)问题
基于用户,数据量大,对于通用物品往往优先推荐,对于热点物品不够准
基于物品,数据量相对小,而推荐同类物品存在用户已持有不再需要的问题
1-2相似度度量原理(如何判断是“基友”)
参考资料:
1-3算法学习
Databricks孟祥瑞:ALS 在 Spark MLlib 中的实现
http://www.cnblogs.com/ShaneZhang/p/3938026.html
http://www.fuqingchuan.com/2015/07/596.html