基于sparkMLlib的机器学习_[2]_基本算法[1]协同过滤算法

协同过滤算法

1-1基本概述

基于用户或物品的推荐算法,人以群分,物以类聚

(1)  基于用户,“人以群分”

孩童A和孩童B是“志同道合”的基友(相似度很高),将A喜欢的物品推荐给B是合理的

(2)基于物品,“物以类聚”

在无先验知识的前提下,根据孩童A所喜欢物品的相似性,将相似物品推荐给A,是合理的


(3)问题

基于用户,数据量大,对于通用物品往往优先推荐,对于热点物品不够准

基于物品,数据量相对小,而推荐同类物品存在用户已持有不再需要的问题


1-2相似度度量原理(如何判断是“基友”)


1-3算法学习

协同过滤之ALS-WR算法

阿基米德项目ALS矩阵分解算法应用案例

Databricks孟祥瑞:ALS 在 Spark MLlib 中的实现

http://www.cnblogs.com/ShaneZhang/p/3938026.html

http://www.fuqingchuan.com/2015/07/596.html

1-4实践

(1)spark summit2014中的电影推荐实践示例




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值