TensorRT(2):TensorRT的使用流程


TensorRT系列传送门(不定期更新): 深度框架|TensorRT



  以caffe分类模型为例,简单介绍TRT的使用流程,这里不涉及量化,就以fp32为例,验证trt的结果是否和python端的结果一致。

caffe为例,需要提供以下文件
deploy.prototxt 网络结构文件
weight.caffemodel 权重文件

TensorRT的使用过程包括两个阶段, build和 deployment
在这里插入图片描述
build阶段主要完成模型转换,从caffe或者tf或者pyTorch到TensorRT
TRT加载模型,并构建TRT的引擎,主要分为六步:

  • 1、建立一个logger日志,必须要有,但又不是那么重要
  • 2、创建一个builder
  • 3、创建一个netwok,这时候netWork只是一个空架子
  • 4、建立一个 Parser,caffe模型、onnx模型和TF模型都有对应的paser,顾名思义,就用用来解析模型文件的
  • 5、建立 engine,进行层之间融合或者进度校准方式,可以fp32、fp16或者fp8
  • 6、建议一个context,这个是用来做inference推断的。上面连接engine,下对应推断数据,所以称之为上下文联系器(博主自取的)
    (PS:感谢晖神提供流程图)
    在这里插入图片描述

一、在线加载caffe模型,序列化保存到本地

主要功能:
1、opencv读取图像,减均值除方差,在NHWC转NCHW
2、trt解析caffe模型
3、保存序列化后的模型
4、建立engine,推断模型、生成结果

/*====================================================================
文件 : sampleCaffeClassf.cc
功能 : TensorRT学习系列1、走通流程

====================================================================*/
#include "NvCaffeParser.h"
#include "NvInfer.h"
#include "NvInferPlugin.h"
#include "logger.h"
#include "cuda_runtime_api.h"
#include "common.h"

#include <cstdlib>
#include <fstream>
#include <iostream>
#include <sstream>
#include <opencv2/opencv.hpp>

using namespace nvinfer1;
using namespace plugin;
using namespace nvcaffeparser1;

const int MODEL_HEIGHT = 256;
const int MODEL_WIDTH = 256;
const int MODEL_CHANNEL = 3;
const int MODEL_OUTPUT_SIZE = 5; // 5分类

/**********************************
 * @brief 先resize、再减均值、除方差
 *
 * @param src 
 * @param dst 
 * @return 
 *********************************/
void preData(cv::Mat &matSrc, cv::Mat &matDst)
{   
    cv::resize(matSrc, matSrc, cv::Size(MODEL_WIDTH, MODEL_HEIGHT));
    cv::Mat matMean(MODEL_HEIGHT, MODEL_WIDTH, CV_32FC3, \
                        cv::Scalar(103.53f, 116.28f, 123.675f)); // 均值
    cv::Mat matStd(256, 256, CV_32FC3, \
                        cv::Scalar(1.0f, 1.0f, 1.0f)); // 方差
    cv::Mat matF32Img;
    matSrc.convertTo(matF32Img, CV_32FC3);
    matDst = (matF32Img - matMean) / matStd;
}

int main()
{
    std::string strTrtSavedPath = "./savedTrt.trt";
    // gLogger
    // 1、创建一个builder, gLogger是一个日志类,必须要有,但又不是那么重要,可以自己继承
    IBuilder* builder = createInferBuilder(gLogger);
    // 2、创建一个netwok,推荐使用V2,这时候netWork只是一个空架子,因为是解析caffe模型,那后面的必须是0U
    // 别问我为啥,官方这么写的
    INetworkDefinition* network = builder->createNetworkV2(0U);
    // TensorRt提供了一个高级别的API,CaffePaser,用于解析caffe模型
    ICaffeParser *parser = createCaffeParser();
    const IBlobNameToTensor *blobNameToTensor = parser->parse("./model/caffeProfile/deploy_vgg16_places365.prototxt",
                                        "./model/caffeProfile/vgg_iter_100000.caffemodel",
                                        *network,
                                        DataType::kFLOAT);
    // 3、标记输入Tensor的节点名
    network->markOutput(*blobNameToTensor->find("prob"));

    //  config是用来填充network的参数
    IBuilderConfig *config = builder->createBuilderConfig();
    // 设置最大batchSize的大小
    builder->setMaxBatchSize(1);
    // 设置工作空间
    config->setMaxWorkspaceSize(1 << 20);
    // 4、建立 engine,进行层之间融合或者进度校准方式
    ICudaEngine *engine = builder->buildEngineWithConfig(*network, *config);

    if (1) // 如果需要离线保存模型
    {
        IHostMemory* trtModelStream{ nullptr };
        trtModelStream = engine->serialize();
        std::ofstream modeStreamoutfile(strTrtSavedPath, std::ofstream::binary);
        assert(!modeStreamoutfile.fail());
        modeStreamoutfile.write((char*)trtModelStream->data(), trtModelStream->size());
        gLogInfo<<"Saving TRT engine " << strTrtSavedPath << "." <<std::endl;
    }
    
    // inference推断过程
    IExecutionContext *context = engine->createExecutionContext();

   int nInputIdx = engine->getBindingIndex("data");
    int nOutputIndex = engine->getBindingIndex("prob");
    std::cout << " nINputIdx = " << nInputIdx << std::endl;
    std::cout << " nOutputIdx = " << nOutputIndex << std::endl;
    // 
    std::cout << " n = " << engine->getNbBindings() << std::endl;
    //申请GPU显存
    // Allocate GPU memory for Input / Output data
    void* buffers[2] = {NULL, NULL};
    int nBatchSize = 1;
    int nOutputSize = MODEL_OUTPUT_SIZE;
    CHECK(cudaMalloc(&buffers[nInputIdx], nBatchSize * MODEL_CHANNEL * MODEL_HEIGHT * MODEL_WIDTH * sizeof(float)));
    CHECK(cudaMalloc(&buffers[nOutputIndex], nBatchSize * nOutputSize * sizeof(float)));

    // 创建cuda流
    cudaStream_t stream;
    CHECK(cudaStreamCreate(&stream));
    cudaEvent_t start, end; //calculate run time
    CHECK(cudaEventCreate(&start));
    CHECK(cudaEventCreate(&end));

    cv::Mat matBgrImg = cv::imread("./data/fram_25.jpg");
    cv::Mat matNormImage;
    preData(matBgrImg, matNormImage); // 减均值除方差


    std::vector<std::vector<cv::Mat>> nChannels;
    std::vector<cv::Mat> rgbChannels(3);
    cv::split(matNormImage, rgbChannels);
    nChannels.push_back(rgbChannels); //  NHWC  转NCHW 

    void *data = malloc(nBatchSize * MODEL_CHANNEL * MODEL_HEIGHT * MODEL_WIDTH *sizeof(float));;
    if (NULL == data)
    {
        printf("malloc error!\n");
        return 0;
    }
    for (int c = 0; c < 3; ++c) 
    {
        cv::Mat cur_imag_plane = nChannels[0][c];
        memcpy(data + c * MODEL_HEIGHT * MODEL_WIDTH * sizeof(float), cur_imag_plane.ptr<unsigned char>(0), 256 *256 * sizeof(float));
    }

    // DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
    CHECK(cudaMemcpyAsync(buffers[nInputIdx], data, \
        nBatchSize * MODEL_CHANNEL * MODEL_WIDTH * MODEL_HEIGHT * sizeof(float), cudaMemcpyHostToDevice, stream));

    float ms;
    cudaEventRecord(start, stream);
    // 5、 启动cuda核计算
    context->enqueue(nBatchSize, buffers, stream, nullptr);
    cudaEventRecord(end, stream);
    cudaEventSynchronize(end);
    cudaEventElapsedTime(&ms, start, end);

    float prob[nBatchSize * nOutputSize];

    CHECK(cudaMemcpyAsync(prob, buffers[nOutputIndex], 1 * 5 * sizeof(float), cudaMemcpyDeviceToHost, stream));
    cudaStreamSynchronize(stream);
    cudaEventDestroy(start);
    cudaEventDestroy(end);

    // Release stream and buffers
    cudaStreamDestroy(stream);
    CHECK(cudaFree(buffers[nInputIdx]));
    CHECK(cudaFree(buffers[nOutputIndex]));

    for(int i=0; i< 5; ++i)
    {
        std::cout << prob[i] << " ";
    }
    std::cout << std::endl;
    
    parser->destroy();
    network->destroy();
    config->destroy();
    builder->destroy();
    printf("hello world \n");
    return 0;
}

二、反序列化直接加载保存后的trt模型

/*====================================================================
文件 : sampleCaffeClassf.cc
功能 : TensorRT学习系列1、走通流程

====================================================================*/
#include "NvCaffeParser.h"
#include "NvInfer.h"
#include "NvInferPlugin.h"
#include "logger.h"
#include "cuda_runtime_api.h"
#include "common.h"

#include <cstdlib>
#include <fstream>
#include <iostream>
#include <sstream>
#include <opencv2/opencv.hpp>

using namespace nvinfer1;
using namespace plugin;
using namespace nvcaffeparser1;

const int MODEL_HEIGHT = 256;
const int MODEL_WIDTH = 256;
const int MODEL_CHANNEL = 3;

const int MODEL_OUTPUT_SIZE = 5; //模型的输出,5分类

/**********************************
 * @brief 先resize、再减均值、除方差
 *
 * @param src 
 * @param dst 
 * @return 
 *********************************/
void preData(cv::Mat &matSrc, cv::Mat &matDst)
{   
    cv::resize(matSrc, matSrc, cv::Size(MODEL_WIDTH, MODEL_HEIGHT));
    cv::Mat matMean(MODEL_HEIGHT, MODEL_WIDTH, CV_32FC3, \
                        cv::Scalar(103.53f, 116.28f, 123.675f)); // 均值
    cv::Mat matStd(256, 256, CV_32FC3, \
                        cv::Scalar(1.0f, 1.0f, 1.0f)); // 方差
    cv::Mat matF32Img;
    matSrc.convertTo(matF32Img, CV_32FC3);
    matDst = (matF32Img - matMean) / matStd;
}

int main()
{
    std::string strTrtSavedPath = "./savedTrt.trt";
    // gLogger
    // gLogger是一个日志类,必须要有,但又不是那么重要,可以自己继承
    IRuntime* runtime = createInferRuntime(gLogger);
    std::ifstream fin(strTrtSavedPath);

    // 1、将文件中的内容读取至cached_engine字符串
    std::string modelData = "";
    while (fin.peek() != EOF){ // 使用fin.peek()防止文件读取时无限循环
        std::stringstream buffer;
        buffer << fin.rdbuf();
        modelData.append(buffer.str());
    }
    fin.close();

    // 2、 将序列化得到的结果进行反序列化,以执行后续的inference
    ICudaEngine* engine = runtime->deserializeCudaEngine(modelData.data(), modelData.size(), nullptr);
    // inference推断过程
    IExecutionContext *context = engine->createExecutionContext();

    int nInputIdx = engine->getBindingIndex("data"); // 输入节点名
    int nOutputIndex = engine->getBindingIndex("prob"); // 输出节点名
    std::cout << " nINputIdx = " << nInputIdx << std::endl;
    std::cout << " nOutputIdx = " << nOutputIndex << std::endl;
    // 
    std::cout << " n = " << engine->getNbBindings() << std::endl;
    //申请GPU显存
    // Allocate GPU memory for Input / Output data
    void* buffers[2] = {NULL, NULL};
    int nBatchSize = 1;
    int nOutputSize = MODEL_OUTPUT_SIZE;
    CHECK(cudaMalloc(&buffers[nInputIdx], nBatchSize * MODEL_CHANNEL * MODEL_HEIGHT * MODEL_WIDTH * sizeof(float)));
    CHECK(cudaMalloc(&buffers[nOutputIndex], nBatchSize * nOutputSize * sizeof(float)));

    // 创建cuda流
    cudaStream_t stream;
    CHECK(cudaStreamCreate(&stream));
    cudaEvent_t start, end; //calculate run time
    CHECK(cudaEventCreate(&start));
    CHECK(cudaEventCreate(&end));

    cv::Mat matBgrImg = cv::imread("./data/fram_25.jpg");
    cv::Mat matNormImage;
    preData(matBgrImg, matNormImage); // 减均值除方差


    std::vector<std::vector<cv::Mat>> nChannels;
    std::vector<cv::Mat> rgbChannels(3);
    cv::split(matNormImage, rgbChannels);
    nChannels.push_back(rgbChannels); //  NHWC  转NCHW 

    void *data = malloc(nBatchSize * MODEL_CHANNEL * MODEL_HEIGHT * MODEL_WIDTH *sizeof(float));;
    if (NULL == data)
    {
        printf("malloc error!\n");
        return 0;
    }
    for (int c = 0; c < 3; ++c) 
    {
        cv::Mat cur_imag_plane = nChannels[0][c];
        memcpy(data + c * MODEL_HEIGHT * MODEL_WIDTH * sizeof(float), cur_imag_plane.ptr<unsigned char>(0), 256 *256 * sizeof(float));
    }

    // DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
    CHECK(cudaMemcpyAsync(buffers[nInputIdx], data, \
        nBatchSize * MODEL_CHANNEL * MODEL_WIDTH * MODEL_HEIGHT * sizeof(float), cudaMemcpyHostToDevice, stream));

    float ms;
    cudaEventRecord(start, stream);
    // 5、 启动cuda核计算
    context->enqueue(nBatchSize, buffers, stream, nullptr);
    cudaEventRecord(end, stream);
    cudaEventSynchronize(end);
    cudaEventElapsedTime(&ms, start, end);

    float prob[nBatchSize * nOutputSize];

    CHECK(cudaMemcpyAsync(prob, buffers[nOutputIndex], 1 * 5 * sizeof(float), cudaMemcpyDeviceToHost, stream));
    cudaStreamSynchronize(stream);
    cudaEventDestroy(start);
    cudaEventDestroy(end);

    // Release stream and buffers
    cudaStreamDestroy(stream);
    CHECK(cudaFree(buffers[nInputIdx]));
    CHECK(cudaFree(buffers[nOutputIndex]));

    for(int i=0; i< 5; ++i)
    {
        std::cout << prob[i] << " ";
    }
    std::cout << std::endl;
    
    engine->destroy();
    printf("hello world \n");
    return 0;
}
  • 7
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值