机器学习总结-3-回归算法

1.线性回归算法

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

2.多项式回归算法

在这里插入图片描述

3.过拟合与正则化

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

4.Logistic回归算法

在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

5.Softmax回归算法

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

6.梯度下降

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述VV在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

7.特征抽取

一.特征提取和特征选择的区
特征选择和降维(特征提取)有着些许的相似点,这两者达到的效果是一样的,就是试图去减少特征数据集中的属性(或者称为特征)的数目;但是两者所采用的方式方法却不同:降维的方法主要是通过属性间的关系,如组合不同的属性得到新的属性,这样就改变了原来的特征空间;而特征选择的方法是从原始特征数据集中选择出子集,是一种包含的关系,没有更改原始的特征空间。
二.常用的特征选择方法有哪些
特征选择是从样本集中选取重要的特征子集
比较有名的特征选择有过滤法(Filter),包裹法(Wrapper),嵌入法(Embedded)
三、常用的特征提取方法有哪些?
常用的方法有主成分分析(PCA),独立成分分析(ICA),线性判别分析(LDA)一般数据是有类别的,最好先考虑用LDA降维。也可先用小幅度的PCA降维消除噪声再用LDA降维,若训练数据没有类别优先考虑PCA。
特征提取是由原始输入形成较少的新特征,它会破坏数据的分布,为了使得训练出的模型更加健壮,若不是数据量很大特征种类很多,一般不要用特征提取。
机器学习之特征选择和特征抽取

8.线性回归案例

在这里插入图片描述

9.应用场景

回归算法应用场景实例二十则在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值