1.线性回归算法
2.多项式回归算法
3.过拟合与正则化
4.Logistic回归算法
5.Softmax回归算法
6.梯度下降
7.特征抽取
一.特征提取和特征选择的区别
特征选择和降维(特征提取)有着些许的相似点,这两者达到的效果是一样的,就是试图去减少特征数据集中的属性(或者称为特征)的数目;但是两者所采用的方式方法却不同:降维的方法主要是通过属性间的关系,如组合不同的属性得到新的属性,这样就改变了原来的特征空间;而特征选择的方法是从原始特征数据集中选择出子集,是一种包含的关系,没有更改原始的特征空间。
二.常用的特征选择方法有哪些?
特征选择是从样本集中选取重要的特征子集
比较有名的特征选择有过滤法(Filter),包裹法(Wrapper),嵌入法(Embedded)
三、常用的特征提取方法有哪些?
常用的方法有主成分分析(PCA),独立成分分析(ICA),线性判别分析(LDA)一般数据是有类别的,最好先考虑用LDA降维。也可先用小幅度的PCA降维消除噪声再用LDA降维,若训练数据没有类别优先考虑PCA。
特征提取是由原始输入形成较少的新特征,它会破坏数据的分布,为了使得训练出的模型更加健壮,若不是数据量很大特征种类很多,一般不要用特征提取。
机器学习之特征选择和特征抽取