基于免疫优化算法在物流配送多中心选址的matlab仿真

目录

1.算法描述

2.仿真效果预览

3.MATLAB核心程序

4.完整MATLAB


1.算法描述

       人工免疫算法(Immune Algorithm)是一种具有生成+检测 (generate and test)的迭代过程的群智能搜索算法。从理论上分析,迭代过程中,在保留上一代最佳个体的前提下,免疫算法是全局收敛的。算法主要包含以下几大模块:

1.抗原识别与初始抗体产生。根据待优化问题的特点设计合适的抗体编码规则,并在此编码规则下利用问题的先验知识产生初始抗体种群。
2.抗体评价。对抗体的质量进行评价,评价准则主要为抗体亲和度和个体浓度,评价得出的优质抗体将进行进化免疫操作,劣质抗体将会被更新。
3.免疫操作。利用免疫选择、克隆、变异、克隆抑制、种群刷新等算子模拟生物免疫应答中的各种免疫操作,形成基于生物免疫系统克隆选择原理的进化规则和方法,实现对各种最优化问题的寻优搜索。
        免疫算法的算子包括:亲和度评价算子、抗体浓度评价算子、激励度计算算子、免疫选择算子、克隆算子、变异算子、克隆抑制算子和种群刷新算子等。由于算法的编码方式可能为实数编码、离散编码等,不同编码方式下的算法算子也会有所不同。

       抗原:在生命科学中,是指能够刺激和诱导机体的免疫系统使其产生免疫应答,并能与相应的免疫应答产物在体内或体外发生特异性反应的物质。在我们的算法中,是指所有可能错误的基因,即非最佳个体的基因。

      抗体:在生命科学中,是指免疫系统受抗原刺激后,免疫细胞转化为浆细胞并产生能与抗原发生特异性结合的免疫球蛋白,该免疫球蛋白即为抗体。在本文中是指根据疫苗修正某个个体的基因所得到的新个体。其中,根据疫苗修正某个个体基因的过程即为接种疫苗,其目的是消除抗原在新个体产生时所带来的负面影响。

       免疫疫苗:根据进化环境或待求问题,所得到的对最佳个体基因的估计。

      免疫算子:同生命科学中的免疫理论类似,免疫算子也分两种类型:全免疫和目标免疫,二者分别对应于生命科学中的非特异性免疫和特异性免疫。其中,全免疫是指群体中每个个体在变异操作后,对其每一环节都进行一次免疫操作的免疫类型;目标免疫则指个体在进行变异操作后,经过一定判断,个体仅在作用点处发生免疫反应的一种类型。前者主要应用于个体进化的初始阶段,而在进化过程中基本上不发生作用,否则将很有可能产生通常意义上所说的“同化现象”;后者一般而言将伴随群体进化的全部过程,也是免疫操作的一个常用算子。

      免疫调节:在免疫反应过程中,大量的抗体的产生降低了抗原对免疫细胞的刺激,从而抑制抗体的分化和增殖,同时产生的抗体之间也存在着相互刺激和抑制的关系,这种抗原与抗体、抗体与抗体之间的相互制约关系使抗体免疫反应维持一定的强度,保证机体的免疫平衡。

      免疫记忆:指免疫系统将能与抗原发生反应的抗体作为记忆细胞保存记忆下来,当同类抗原再次侵入时,相应的记忆细胞被激活而产生大量的抗体,缩短免疫反应时间。

      抗原识别:通过表达在抗原表面的表位和抗体分子表面的对位的化学基进行相互匹配选择完成识别,这种匹配过程也是一个不断对抗原学习的过程,最终能选择产生最适当的抗体与抗原结合而排除抗原。

2.仿真效果预览

matlab2022a仿真结果如下:

 

3.MATLAB核心程序

sizepop=50;           % 种群规模
overbest=10;          % 记忆库容量
MAXGEN=100;            % 迭代次数
pcross=0.5;           % 交叉概率
pmutation=0.4;        % 变异概率
ps=0.95;              % 多样性评价参数
length=6;             % 配送中心数
M=sizepop+overbest;
 
%% step1 识别抗原,将种群信息定义为一个结构体
individuals = struct('fitness',zeros(1,M), 'concentration',zeros(1,M),'excellence',zeros(1,M),'chrom',[]);
%% step2 产生初始抗体群
individuals.chrom = popinit(M,length);
trace=[]; %记录每代最个体优适应度和平均适应度
 
%% 迭代寻优
for iii=1:MAXGEN
    iii
     %% step3 抗体群多样性评价
     for i=1:M
         individuals.fitness(i) = fitness(individuals.chrom(i,:));      % 抗体与抗原亲和度(适应度值)计算
         individuals.concentration(i) = concentration(i,M,individuals); % 抗体浓度计算
     end
     % 综合亲和度和浓度评价抗体优秀程度,得出繁殖概率
     individuals.excellence = excellence(individuals,M,ps);
          
     % 记录当代最佳个体和种群平均适应度
     [best,index] = min(individuals.fitness);   % 找出最优适应度 
     bestchrom = individuals.chrom(index,:);    % 找出最优个体
     average = mean(individuals.fitness);       % 计算平均适应度
     trace = [trace;best,average];              % 记录
     
     %% step4 根据excellence,形成父代群,更新记忆库(加入精英保留策略,可由s控制)
     bestindividuals = bestselect(individuals,M,overbest);   % 更新记忆库
     individuals = bestselect(individuals,M,sizepop);        % 形成父代群
 
     %% step5 选择,交叉,变异操作,再加入记忆库中抗体,产生新种群
     individuals = Select(individuals,sizepop);                                                             % 选择
     individuals.chrom = Cross(pcross,individuals.chrom,sizepop,length);                                    % 交叉
     individuals.chrom = Mutation(pmutation,individuals.chrom,sizepop,length);   % 变异
     individuals = incorporate(individuals,sizepop,bestindividuals,overbest);                               % 加入记忆库中抗体      
 
end
 
%% 画出免疫算法收敛曲线
figure(1)
plot(trace(:,1));
hold on
plot(trace(:,2),'--');
legend('最优适应度值','平均适应度值')
title('免疫算法收敛曲线','fontsize',12)
xlabel('迭代次数','fontsize',12)
ylabel('适应度值','fontsize',12)
%% 画出配送中心选址图
%城市坐标
city_coordinate=[1304,2312;3639,1315;4177,2244;3712,1399;3488,1535;3326,1556;3238,1229;4196,1044;4312,790;4386,570;           3007,1970;2562,1756;2788,1491;2381,1676;1332,695;3715,1678;3918,2179;4061,2370;3780,2212;3676,2578;             4029,2838;4263,2931;3429,1908;3507,2376;3394,2643;3439,3201;2935,3240;3140,3550;2545,2357;2778,2826;2370,2975];
carge=[20,90,90,60,70,70,40,90,90,70,60,40,40,40,20,80,90,70,100,50,50,50,80,70,80,40,40,60,70,50,30];
%找出最近配送点
for i=1:31
    distance(i,:)=dist(city_coordinate(i,:),city_coordinate(bestchrom,:)');
end
[a,b]=min(distance');
index=cell(1,length);
for i=1:length
%计算各个派送点的地址
index{i}=find(b==i);
end
figure(2)
title('最优规划派送路线')
cargox=city_coordinate(bestchrom,1);
cargoy=city_coordinate(bestchrom,2);
plot(cargox,cargoy,'rs','LineWidth',2,...
    'MarkerEdgeColor','r',...
    'MarkerFaceColor','b',...
    'MarkerSize',20)
hold on
 
plot(city_coordinate(:,1),city_coordinate(:,2),'o','LineWidth',2,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor','g',...
    'MarkerSize',10)
 
for i=1:31
    x=[city_coordinate(i,1),city_coordinate(bestchrom(b(i)),1)];
    y=[city_coordinate(i,2),city_coordinate(bestchrom(b(i)),2)];
    plot(x,y,'c');hold on
end
A96

4.完整MATLAB

V

matlab编写的人工免疫算法 clc clear all close all tic; global n ww m=100;% m--抗体规模 n=22;% n--每个抗体二进制字符串长度 ww=1;%参数个数 mn=100;%从抗体集合里选择n个具有较高亲和度的最佳个体进行克隆操作 xmin=[0 0]; xmax=[9 9]; tnum=100;% tnum--迭代代数 pMutate=0.1;% pMutate--高频变异概率 cfactor=0.2;% cfactor--克隆(复制)因子 A=InitializeFun(m,n); %生成抗体集合A,抗体数目为m,每个抗体基因长度为n F='X+10*sin(X.*5)+7*cos(X.*4)'; %目标函数 %F='sin(10*X)' FM=[]; %存放各代最优值的集合 FMN=[]; %存放各代平均值的集合 t=0; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% while t<tnum t=t+1; X=DecodeFun(A(:,1:22),xmin,xmax); %将二进制数转换成十进制数 Fit=eval(F); %以X为自变量求函数值并存放到集合Fit中 if t==1 figure(1) fplot(F,[xmin(1),xmax(1)]); grid on hold on plot(X,Fit,'k*') title('抗体的初始位置分布图') xlabel('x') ylabel('f(x)') end if t==tnum figure(2) fplot(F,[xmin(1),xmax(1)]); grid on hold on plot(X,Fit,'r*') title('抗体的最终位置分布图') xlabel('x') ylabel('f(x)') end T=[]; %把零时存放抗体的集合清空 [FS,Affinity]=sort(Fit,'descend'); %把第t代的函数值Fit按从小到大的顺序排列并存放到FS中 XT=X(Affinity(end-mn+1:end)); %把第t代的函数值的坐标按从小到大的顺序排列并存放到XT中 FT=FS(end-mn+1:end); %从FS集合中取后mn个第t代的函数值按原顺序排列并存放到FT中 FM=[FM FT(end)]; %把第t代的最优函数值加到集合FM中 %克隆(复制)操作,选择mn个候选抗体进行克隆,克隆数与亲和度成正比,AAS是每个候选抗体克隆后在T中的开始坐标 [T,AAS]=ReproduceFun(mn,cfactor,m,Affinity,A,T); %高频变异操作,变异概率反比于抗体的亲和度 T=Hypermutation(T,n,pMutate,xmax,xmin); %把以前的抗体保存到临时克隆群体T里 AF1=fliplr(Affinity(end-mn+1:end)); %从大到小重新排列要克隆的mn个原始抗体 T(AAS,:)=A(AF1,:); %把以前的抗体保存到临时克隆群体T里%从临时抗体集合T中根据亲和度的值选择mn个(多峰函数的解决) X=DecodeFun(T(:,1:22),xmin,xmax); Fit=eval(F); AAS=[0 AAS]; FMN=[FMN mean(Fit)]; for i=1:mn [OUT(i),BBS(i)]=min(Fit(AAS(i)+1:AAS(i+1))); %克隆子群中的亲和度最大的抗体被选中 BBS(i)=BBS(i)+AAS(i); end AF2=fliplr(Affinity(end-mn+1:end)); %从大到小重新排列要克隆的mn个原始抗体 A(AF2,:)=T(BBS,:); %选择克隆变异后mn个子群中的最好个体保存到A里,其余丢失 end disp(sprintf('\n The optimal point is:')); disp(sprintf('\n x: %2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我爱C编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值