一、平面及其方程(3个条件,4种表达)
F ( x , y , z ) F(x,y,z) F(x,y,z)为平面方程:
- 在这个平面上的点满足 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0
- 不在这个平面上的点不满足 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0
归根结底,就是要三个点。变化有很多,可能是三个平面内的点,也可能是截点,也可能连成平面内线段后确定法向搞点法式
1.点法式
用平面法线和平面上的一个向量来确定平面。
平面方程: a ( x 0 − x ) + b ( y 0 − y ) + c ( z 0 − z ) = 0 a(x_0-x)+b(y_0-y)+c(z_0-z)=0 a(x0−x)+b(y0−y)+c(z0−z)=0
P Q ⋅ n = 0 \mathbf{PQ}\cdot \mathbf n=0 PQ⋅n=0
- 法线 n = ( a , b , c ) \mathbf{n}=(a,b,c) n=(a,b,c)
- 法线和平面交点 Q = ( x 0 , y 0 , z 0 ) Q=(x_0,y_0,z_0) Q=(x0,y0,z0)
- 平面上其他一点 P = ( x , y , z ) P=(x,y,z) P=(x,y,z)
- P Q = ( x 0 − x , y 0 − y , z 0 − z ) \mathbf{PQ}=(x_0-x,y_0-y,z_0-z) PQ=(x0−x,y0−y,z0−z)
2.一般式
A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0
3.三点式
用平面上不共线的三点确定一个平面。
已知: A ( x 1 , y 1 , z 1 ) , B ( x 2 , y 2 , z 2 ) , C ( x 3 , y 3 , z 3 ) A(x_1,y_1,z_1),B(x_2,y_2,z_2),C(x_3,y_3,z_3) A(x1,y1,z1),B(x2,y2,z2),C(x3,y3,z3),在平面上任取一点 P ( x , y , z ) P(x,y,z) P(x,y,z)
P A = ( x 1 − x , y 1 − y , z 1 − z ) \mathbf{PA}=(x_1-x,y_1-y,z_1-z) PA=(x1−x,y1−y,z1−z)
A B = ( x 2 − x 1 , y 2 − y 1 , z 2 − z 1 ) \mathbf{AB}=(x_2-x_1,y_2-y_1,z_2-z_1) AB=(x2−x1,y2−y1,z2−z1)
A C = ( x 3 − x 1 , y 3 − y 1 , z 3 − z 1 ) \mathbf{AC}=(x_3-x_1,y_3-y_1,z_3-z_1) AC=(x3−x1,y3−y1,z3−z1)
[
P
A
,
A
B
,
A
C
]
=
0
[\mathbf{PA},\mathbf{AB},\mathbf{AC}]=0
[PA,AB,AC]=0
(
x
1
−
x
y
1
−
y
z
1
−
z
x
2
−
x
1
y
2
−
y
1
z
2
−
z
1
x
3
−
x
1
y
3
−
y
1
z
3
−
z
1
)
=
0
\left(\begin{array}{l} x_1-x&y_1-y&z_1-z\\ x_2-x_1&y_2-y_1&z_2-z_1\\ x_3-x_1&y_3-y_1&z_3-z_1 \end{array} \right)=0
x1−xx2−x1x3−x1y1−yy2−y1y3−y1z1−zz2−z1z3−z1
=0
也可以直接根据 A B × A C \mathbf{AB}\times\mathbf{AC} AB×AC构造法向量,然后用点法式。
4.截距式
若平面和三坐标轴分别相交于A(a,0,0),B(0,b,0),C(0,0,c),则从上面的三点式可以得:
(
a
−
x
−
y
−
z
−
a
b
0
−
a
0
c
)
=
0
b
c
x
+
a
c
y
+
a
b
z
=
a
b
c
x
a
+
y
b
+
z
c
=
1
\left(\begin{array}{l} a-x&-y&-z\\ -a&b&0\\ -a&0&c \end{array} \right)=0 \\ bcx+acy+abz=abc\\ \frac xa+\frac yb+\frac zc=1
a−x−a−a−yb0−z0c
=0bcx+acy+abz=abcax+by+cz=1
对于一般式:
A
x
+
B
y
+
C
z
=
D
Ax+By+Cz=D
Ax+By+Cz=D
=> A D x + B D y + C D z = 1 \frac ADx+\frac BDy+\frac CDz=1 DAx+DBy+DCz=1
A D = 1 a ; B D = 1 b ; C D = 1 c \frac AD=\frac 1a;\frac BD=\frac 1b;\frac CD=\frac1c DA=a1;DB=b1;DC=c1
二、平面和平面的关系
假设有两个平面,平面方程分别为 A 1 x + B 1 y + C 1 z + D 1 = 0 , A 2 x + B 2 y + C 2 z + D 2 = 0 A_1x+B_1y+C_1z+D_1=0,A_2x+B_2y+C_2z+D_2=0 A1x+B1y+C1z+D1=0,A2x+B2y+C2z+D2=0
1.垂直
两平面垂直的时候两平面对应法向量也垂直。
n 1 ⋅ n 2 = 0 \mathbf{n_1}\cdot \mathbf{n_2}=0 n1⋅n2=0
2.平行(不重叠)
n 1 / / n 2 \mathbf{n_1}//\mathbf{n_2} n1//n2
- n 1 = k n 2 ( k ≠ 0 ) \mathbf{n_1}=k\mathbf{n_2}(k\ne 0) n1=kn2(k=0)
- n 1 × n 2 = 0 \mathbf{n_1}\times\mathbf{n_2}=0 n1×n2=0
- A 1 A 2 = B 1 B 2 = C 1 C 2 = λ , D 1 D 2 ≠ λ \frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}=\lambda,\frac{D_1}{D_2}\ne \lambda A2A1=B2B1=C2C1=λ,D2D1=λ
3.重叠
n 1 = n 2 \mathbf{n_1}=\mathbf{n_2} n1=n2
- n 1 = k n 2 \mathbf{n_1}=k\mathbf{n_2} n1=kn2
- A 1 A 2 = B 1 B 2 = C 1 C 2 = D 1 D 2 = λ \frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}=\frac{D_1}{D_2}=\lambda A2A1=B2B1=C2C1=D2D1=λ
4.相交
不平行,可能垂直的状态。
- n 1 ≠ k n 2 \mathbf{n_1}\ne k\mathbf{n_2} n1=kn2
- n 1 × n 2 ≠ 0 \mathbf{n_1}\times\mathbf{n_2}\ne0 n1×n2=0