什么是 AI 管道?AI 管道是一种自动化机器学习工作流程的方法。AI 管道 一般包括四个主要阶段:
1.预处理
2.学习
3.评估
4.预言
一、什么是机器学习操作?
术语“Ops”是“操作”的简写,被附加到许多不同的术语中,以表示对适合单个学科的多个相互关联的流程进行精简。例如,这种框架设备更常见的用途之一是“DevOps”,或将多个流程(如测试、错误跟踪、监控和迭代敏捷开发)集成到单个管道中。
集成操作发挥巨大作用的另一个地方是机器学习。机器学习是一个包含多个关键组件的复杂过程,而最佳地执行这些组件可以证明是可靠机器学习平台的成败。
MLOps 是 AI 平台的关键部分,部分原因在于机器学习和 AI 之间的关系:
- 人工智能平台为智能机器提供动力:更大的机器,包括分析平台和制造系统,由可以持决策和优化的人工智能提供支持。人工智能通常包含几个组件,其中之一是机器学习。
- 神经网络大脑为人工智能提供动力:神经网络是根据我们在人脑中观察到的情况建模的——也就是说,思维过程由神经元等较小的组件组成,将输入处理成越来越复杂的过程。创造性思维是相对简单的任务完成的涌现结果。
- 机器学习算法教授神经网络:机器学习算法在机器学习管道的推动下,获取数据并通机器学习模型运行,以了解特定系统及其工作方式。机器学习算法使用的模型可能会改变它们的学习方式,但基线操作是算法优化战略思维,可以作为人工智能平台的基础。
因此