import numpy as np import sklearn.preprocessing as prep import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #initialize parameter with xavier #Yoshua Bengio indecate that xavier, which is 0-average and 2/(num_in+num_out)-variance, is a good initialal pamameter method def xavier_init(fan_in, fan_out, constant=1): low = -constant*np.sqrt(6.0/(fan_in+fan_out)) high = constant*np.sqrt(6.0/(fan_in+fan_out)) return tf.random_uniform((fan_in,fan_out),minval=low,maxval=high,dtype=tf.float32) #autoencoder Class class AdditvieGussianNoiseAutoencoder(object): def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus, optimizer = tf.train.AdamOptimizer(), scale = 0.1): self.n_input = n_input self.n_hidden = n_hidden self.transfer_function = transfer_function self.scale = tf.placeholder(tf.float32) self.training_scale = scale network_weights = self._initialize_weights() self.weights = network_weights self.x = tf.placeholder(tf.float32, [None,self.n_input]) self.hidden = self.transfer_function(tf.add(tf.matmul(self.x+scale*tf.random_normal((n_input,)),self.weights['w1']),self.weights['b1'])) self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']),self.weights['b2']) self.cost = 0.5*tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction,self.x),2.0)) self.optimizer = optimizer.minimize(self.cost) init = tf.global_variables_initializer() self.sess = tf.Session() self.sess.run(init) #initialize parameter #since w1 has an activation function, it should be initialized by avixer. otherwise, zeros are ok def _initialize_weights(self): all_weights = dict() all_weights['w1'] = tf.Variable(xavier_init(self.n_input, self.n_hidden)) all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32)) all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input],dtype=tf.float32)) all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype= tf.float32)) return all_weights #batch training #calculate the batch cost and then optimize the network def partial_fit(self, X): cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict = {self.x:X, self.scale: self.training_scale}) return cost #calculate the total cost def calc_total_cost(self, X): return self.sess.run(self.cost, feed_dict= {self.x: X, self.scale: self.training_scale}) #transform the input to hidden_output def transform(self, X): return self.sess.run(self.hidden, feed_dict={self.x: X, self.scale: self.training_scale}) #transform the hidden_output to output def generate(self, hidden= None): if hidden is None: hidden= np.random.normal(size=self.weights['b1']) return self.sess.run(self.reconstruction, feed_dict={self.hidden:hidden}) #from input to output def reconstruct(self,X): return self.sess.run(self.reconstruction, feed_dict={self.x:X, self.scale: self.training_scale}) #get hidden-layer weights w1 def getweights(self): return self.sess.run(self.weights['w1']) #get hidden-layer biases b1 def getBiases(self): return self.sess.run(self.weights['b1']) #load the MNIST_data_set mnist = input_data.read_data_sets('/home/star/MNIST_data/',one_hot= True) #standard the input with StandardScaler def standard_scale(X_train, X_test): preprocessor = prep.StandardScaler().fit(X_train) X_train = preprocessor.transform(X_train) X_test = preprocessor.transform(X_test) return X_train, X_test #choose a start_index of batch randomly def get_random_block_from_data(data, batch_size): start_index = np.random.randint(0, len(data)-batch_size) return data[start_index:(start_index + batch_size)] #Basic parameter X_train, X_test = standard_scale(mnist.train.images, mnist.test.images) n_samples = int(mnist.train.num_examples) training_epochs = 20 batch_size = 128 display_step = 1 #create an instance autoencoder = AdditvieGussianNoiseAutoencoder(n_input= 784, n_hidden= 200, transfer_function= tf.nn.softplus, optimizer= tf.train.AdamOptimizer(learning_rate= 0.001), scale= 0.01) #training for epoch in range(training_epochs): avg_cost = 0 total_batch = int(n_samples/batch_size) for i in range(total_batch): batch_xs = get_random_block_from_data(X_train, batch_size) cost = autoencoder.partial_fit(batch_xs) avg_cost += cost/n_samples* batch_size if epoch%display_step ==0: print('Epoch:', '%04d' % (epoch+1), 'cost=', '{:.9f}'.format(avg_cost)) #testing print('Total cost:' + str(autoencoder.calc_total_cost(X_test)))
autoencoder
最新推荐文章于 2024-06-13 00:32:46 发布