第T11周:优化器对比实验

一、前期工作

本次主要是探究不同优化器、以及不同参数配置对模型的影响,在论文当中我们也可以进行优化器的比对,以增加论文工作量。

🏡我的环境:

  • 语言环境:Python3.8
  • 编译器:jupyter Lab
  • 深度学习环境:TensorFlow2.4.1
  • 显卡(GPU):MacBookPro M2

🦾我的环境:

  • 语言环境:Python3.8
  • 编译器:Jupyter Lab
  • 深度学习环境:
    • TensorFlow2

1. 设置GPU

如果使用的是CPU可以忽略这步

import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

from tensorflow          import keras
import matplotlib.pyplot as plt
import pandas            as pd
import numpy             as np
import warnings,os,PIL,pathlib    
    
gpu0
PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')

二、导入数据

2.1. 导入数据

data_dir    = "./data/p11"
data_dir    = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)
图片总数为: 1800
batch_size = 16
img_height = 336
img_width  = 336
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 1800 files belonging to 17 classes.
Using 1440 files for training.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 1800 files belonging to 17 classes.
Using 360 files for validation.
img_height = 224
img_width  = 224
batch_size = 32

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.3,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 3400 files belonging to 2 classes.
Using 2380 files for training.
class_names = train_ds.class_names
print(class_names)
['Angelina Jolie', 'Brad Pitt', 'Denzel Washington', 'Hugh Jackman', 'Jennifer Lawrence', 'Johnny Depp', 'Kate Winslet', 'Leonardo DiCaprio', 'Megan Fox', 'Natalie Portman', 'Nicole Kidman', 'Robert Downey Jr', 'Sandra Bullock', 'Scarlett Johansson', 'Tom Cruise', 'Tom Hanks', 'Will Smith']

2.2. 检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
(16, 336, 336, 3)
(16,)

2.3. 配置数据集

AUTOTUNE = tf.data.AUTOTUNE

def train_preprocessing(image,label):
    return (image/255.0,label)

train_ds = (
    train_ds.cache()
    .shuffle(1000)
    .map(train_preprocessing)    # 这里可以设置预处理函数
#     .batch(batch_size)           # 在image_dataset_from_directory处已经设置了batch_size
    .prefetch(buffer_size=AUTOTUNE)
)

val_ds = (
    val_ds.cache()
    .shuffle(1000)
    .map(train_preprocessing)    # 这里可以设置预处理函数
#     .batch(batch_size)         # 在image_dataset_from_directory处已经设置了batch_size
    .prefetch(buffer_size=AUTOTUNE)
)

2.4. 数据可视化

plt.figure(figsize=(10, 8))  # 图形的宽为10高为5
plt.suptitle("Show DataSet")

for images, labels in train_ds.take(1):
    for i in range(15):
        plt.subplot(4, 5, i + 1)
        plt.xticks([])
        plt.yticks([])
        plt.grid(False)

        # 显示图片
        plt.imshow(images[i])
        # 显示标签
        plt.xlabel(class_names[labels[i]-1])

plt.show()

在这里插入图片描述

三、构建模型

from tensorflow.keras.layers import Dropout,Dense,BatchNormalization
from tensorflow.keras.models import Model

def create_model(optimizer='adam'):
    # 加载预训练模型
    vgg16_base_model = tf.keras.applications.vgg16.VGG16(weights='imagenet',
                                                                include_top=False,
                                                                input_shape=(img_width, img_height, 3),
                                                                pooling='avg')
    for layer in vgg16_base_model.layers:
        layer.trainable = False

    X = vgg16_base_model.output
    
    X = Dense(170, activation='relu')(X)
    X = BatchNormalization()(X)
    X = Dropout(0.5)(X)

    output = Dense(len(class_names), activation='softmax')(X)
    vgg16_model = Model(inputs=vgg16_base_model.input, outputs=output)

    vgg16_model.compile(optimizer=optimizer,
                        loss='sparse_categorical_crossentropy',
                        metrics=['accuracy'])
    return vgg16_model

model1 = create_model(optimizer=tf.keras.optimizers.Adam())
model2 = create_model(optimizer=tf.keras.optimizers.SGD())
model2.summary()
WARNING:absl:At this time, the v2.11+ optimizer `tf.keras.optimizers.Adam` runs slowly on M1/M2 Macs, please use the legacy Keras optimizer instead, located at `tf.keras.optimizers.legacy.Adam`.


Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/vgg16/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5
58889256/58889256 [==============================] - 5s 0us/step


WARNING:absl:There is a known slowdown when using v2.11+ Keras optimizers on M1/M2 Macs. Falling back to the legacy Keras optimizer, i.e., `tf.keras.optimizers.legacy.Adam`.
WARNING:absl:At this time, the v2.11+ optimizer `tf.keras.optimizers.SGD` runs slowly on M1/M2 Macs, please use the legacy Keras optimizer instead, located at `tf.keras.optimizers.legacy.SGD`.
WARNING:absl:There is a known slowdown when using v2.11+ Keras optimizers on M1/M2 Macs. Falling back to the legacy Keras optimizer, i.e., `tf.keras.optimizers.legacy.SGD`.


Model: "model_1"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_2 (InputLayer)        [(None, 336, 336, 3)]     0         
                                                                 
 block1_conv1 (Conv2D)       (None, 336, 336, 64)      1792      
                                                                 
 block1_conv2 (Conv2D)       (None, 336, 336, 64)      36928     
                                                                 
 block1_pool (MaxPooling2D)  (None, 168, 168, 64)      0         
                                                                 
 block2_conv1 (Conv2D)       (None, 168, 168, 128)     73856     
                                                                 
 block2_conv2 (Conv2D)       (None, 168, 168, 128)     147584    
                                                                 
 block2_pool (MaxPooling2D)  (None, 84, 84, 128)       0         
                                                                 
 block3_conv1 (Conv2D)       (None, 84, 84, 256)       295168    
                                                                 
 block3_conv2 (Conv2D)       (None, 84, 84, 256)       590080    
                                                                 
 block3_conv3 (Conv2D)       (None, 84, 84, 256)       590080    
                                                                 
 block3_pool (MaxPooling2D)  (None, 42, 42, 256)       0         
                                                                 
 block4_conv1 (Conv2D)       (None, 42, 42, 512)       1180160   
                                                                 
 block4_conv2 (Conv2D)       (None, 42, 42, 512)       2359808   
                                                                 
 block4_conv3 (Conv2D)       (None, 42, 42, 512)       2359808   
                                                                 
 block4_pool (MaxPooling2D)  (None, 21, 21, 512)       0         
                                                                 
 block5_conv1 (Conv2D)       (None, 21, 21, 512)       2359808   
                                                                 
 block5_conv2 (Conv2D)       (None, 21, 21, 512)       2359808   
                                                                 
 block5_conv3 (Conv2D)       (None, 21, 21, 512)       2359808   
                                                                 
 block5_pool (MaxPooling2D)  (None, 10, 10, 512)       0         
                                                                 
 global_average_pooling2d_1  (None, 512)               0         
  (GlobalAveragePooling2D)                                       
                                                                 
 dense_2 (Dense)             (None, 170)               87210     
                                                                 
 batch_normalization_1 (Bat  (None, 170)               680       
 chNormalization)                                                
                                                                 
 dropout_1 (Dropout)         (None, 170)               0         
                                                                 
 dense_3 (Dense)             (None, 17)                2907      
                                                                 
=================================================================
Total params: 14805485 (56.48 MB)
Trainable params: 90457 (353.35 KB)
Non-trainable params: 14715028 (56.13 MB)
_________________________________________________________________

四、训练模型

NO_EPOCHS = 50

history_model1  = model1.fit(train_ds, epochs=NO_EPOCHS, verbose=1, validation_data=val_ds)
history_model2  = model2.fit(train_ds, epochs=NO_EPOCHS, verbose=1, validation_data=val_ds)
Epoch 1/50


2024-08-10 23:33:17.205425: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:114] Plugin optimizer for device_type GPU is enabled.


90/90 [==============================] - ETA: 0s - loss: 3.2193 - accuracy: 0.1410

2024-08-10 23:33:46.452601: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:114] Plugin optimizer for device_type GPU is enabled.


90/90 [==============================] - 37s 398ms/step - loss: 3.2193 - accuracy: 0.1410 - val_loss: 2.6759 - val_accuracy: 0.1667
Epoch 2/50
90/90 [==============================] - 35s 393ms/step - loss: 1.9668 - accuracy: 0.3736 - val_loss: 2.4531 - val_accuracy: 0.2250
Epoch 3/50
...
90/90 [==============================] - 35s 392ms/step - loss: 0.5482 - accuracy: 0.8389 - val_loss: 1.3904 - val_accuracy: 0.5889
Epoch 50/50

五、评估模型

5.1. Accuracy与Loss图

from matplotlib.ticker import MultipleLocator
plt.rcParams['savefig.dpi'] = 300 #图片像素
plt.rcParams['figure.dpi']  = 300 #分辨率

acc1     = history_model1.history['accuracy']
acc2     = history_model2.history['accuracy']
val_acc1 = history_model1.history['val_accuracy']
val_acc2 = history_model2.history['val_accuracy']

loss1     = history_model1.history['loss']
loss2     = history_model2.history['loss']
val_loss1 = history_model1.history['val_loss']
val_loss2 = history_model2.history['val_loss']

epochs_range = range(len(acc1))

plt.figure(figsize=(16, 4))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, acc1, label='Training Accuracy-Adam')
plt.plot(epochs_range, acc2, label='Training Accuracy-SGD')
plt.plot(epochs_range, val_acc1, label='Validation Accuracy-Adam')
plt.plot(epochs_range, val_acc2, label='Validation Accuracy-SGD')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
# 设置刻度间隔,x轴每1一个刻度
ax = plt.gca()
ax.xaxis.set_major_locator(MultipleLocator(1))

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss1, label='Training Loss-Adam')
plt.plot(epochs_range, loss2, label='Training Loss-SGD')
plt.plot(epochs_range, val_loss1, label='Validation Loss-Adam')
plt.plot(epochs_range, val_loss2, label='Validation Loss-SGD')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
   
# 设置刻度间隔,x轴每1一个刻度
ax = plt.gca()
ax.xaxis.set_major_locator(MultipleLocator(1))

plt.show()

在这里插入图片描述

5.2. 模型评估

def test_accuracy_report(model):
    score = model.evaluate(val_ds, verbose=0)
    print('Loss function: %s, accuracy:' % score[0], score[1])
    
test_accuracy_report(model2)
Loss function: 1.3904080390930176, accuracy: 0.5888888835906982
  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值