[矩阵的QR分解系列五] Eigen中的QR分解

Eigen中的QR分解

之前介绍的矩阵的三角分解系列介绍了利用矩阵初等变换解决了矩阵三角化问题以及具体的三角分解。但是以初等变换工具的三角分解方法并不能消除病态线性方程组不稳定问题,而且有时候对于可逆矩阵有可能也不存在三角分解。所以后面为了解决这里问题,发展出来了以正交(酉)变换的矩阵的QR(正交三角)分解,矩阵的正交三角分解是一种对任何可逆矩阵均存在理想分解。进行QR分解需要用到施密特(Schmidt)正交规范化,吉文斯(Givens)变换和豪斯霍尔德(Householder)变换等。这里矩阵的QR分解系列教程主要是针对在学习QR分解时候的涉及到的一些细节,包括很多方法的来源和证明等,以及其中用到的一些矩阵操作的基础知识,主要包括:

这个系列后面文章会用到前面文章的理论和技术,所以建议按照顺序查看。

简介

上面介绍的都是QR分解的基础知识,可以了解每种QR分解方法具体含义,推导的过程以及适用的范围,有了前面的介绍其实自己去实现相应的QR分解方法也变得非常的简单。但在实际使用过程中,很少自己去实现这种复杂的矩阵QR分解,大部分情况下都是调用现成的矩阵运算的算法库。这里介绍比较常用的矩阵运算库Eigen的QR分解的一些使用方法。

QR分解函数

Eigen库中主要包含下面这些QR函数

分解方法Eigen函数适用矩阵分解公式
HouseholderQREigen::HouseholderQR任意矩阵 A = Q R A=QR A=QR
ColPivHouseholderQREigen::ColPivHouseholderQR任意矩阵 A = Q R A=QR A=QR
FullPivHouseholderQREigen::FullPivHouseholderQR任意矩阵 A = Q R A=QR A=QR

使用范例

待续~~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值