打怪兽问题

打怪兽问题

作者:Grey

原文地址:

博客园:打怪兽问题

CSDN: 打怪兽问题

题目描述

题目链接: 牛客-打怪兽

开始时你的能力是0,你的目标是从0号怪兽开始,通过所有的怪兽。
如果你当前的能力,小于i号怪兽的能力,你必须付出money[i]的钱,贿赂这个怪兽,然后怪兽就会加入你,他的能力直接累加到你的能力上;
如果你当前的能力,大于等于 i 号怪兽的能力,你可以选择直接通过,你的能力并不会下降,你也可以选择贿赂这个怪兽,然后怪兽就会加入你,他的能力直接累加到你的能力上。
返回通过所有的怪兽,需要花的最小钱数。

主要思路

本题要根据数据量不同使用不同的动态规划解法

情况1:如果怪兽数量不大和血量都不大的情况,定义如下递归函数

long p(int[] hp, int[] money, int i, int j)

递归含义是:当前血量是 j,从第 i 号怪兽开始,到最后通过所有怪兽的最少钱数是多少?

代码和注释说明如下

    public static long p(int[] hp, int[] money, int i, int j) {
        // i 已经到最后了,不需要继续花钱打怪兽
        if (i == hp.length) {
            return 0;
        }
        // i号怪兽选择贿赂
        long p = money[i] + p(hp, money, i + 1, j + hp[i]);
        // 不选贿赂i号怪兽,这时候是有条件的,就是当前血量 j 需要大于当前怪兽值
        if (j >= hp[i]) {
            return Math.min(p, p(hp, money, i + 1, j));
        }
        return p;
    }

通过上述递归函数,可以转换成动态规划,利用一个二维数组即可,代码如下

    public static long func1Dp(int[] hp, int[] money) {
        int sum = 0;
        for (int a : hp) {
            sum += a;
        }
        long[][] dp = new long[hp.length + 1][sum + 1];
        for (int i = hp.length - 1; i >= 0; i--) {
            for (int j = sum - hp[i]; j >= 0; j--) {
                dp[i][j] = money[i] + dp[i + 1][j + hp[i]];
                if (j >= hp[i]) {
                    dp[i][j] = Math.min(dp[i][j], dp[i + 1][j]);
                }
            }
        }
        return dp[0][0];
    }

这个二维数组的规模就是上述递归函数 i 和 j 的变化范围相乘,其中 i 的变化范围是[0……怪兽数量之和],j 的变化范围是[0……血量和]。所以适用于怪兽数量和血量都不大的场景。

情况2:如果怪兽能力比较大,但是钱数不大情况,我们需要调整递归函数,定义如下递归函数

long p2(int[] hp, int[] money, int index, int m)

递归含义是:从 0……index 号怪兽,花的钱,必须严格等于 m 的情况下,如果通过不了,返回-1;如果可以通过,返回能通过情况下的最大能力值。

递归方法实现如下

    public static long p2(int[] hp, int[] money, int index, int m) {
        // 从右往左填,base case 
        if (index == -1) {
            return m == 0 ? 0L : -1L;
        }
        // 贿赂当前怪兽
        long p1 = p2(hp, money, index - 1, m);
        long ans = -1;
        if (p1 != -1 && p1 >= hp[index]) {
            // 贿赂是有效的,或者贿赂结果可以支持下一次的决策
            ans = p1;
        }
        // 不贿赂当前怪兽
        long p2 = p2(hp, money, index - 1, m - money[index]);
        if (p2 != -1) {
            // 可以走到最后,与贿赂得到的能力值pk下。
            ans = Math.max(ans, p2 + hp[index]);
        }
        return ans;
    }

同理,这个递归也可以改成动态规划,也是利用一个二维数组,

 public static long func4(int[] d, int[] p) {
        int sum = 0;
        for (int num : p) {
            sum += num;
        }
        // dp[i][j]含义:
        // 能经过0~i的怪兽,且花钱为j(花钱的严格等于j)时的武力值最大是多少?
        // 如果dp[i][j]==-1,表示经过0~i的怪兽,花钱为j是无法通过的,或者之前的钱怎么组合也得不到正好为j的钱数
        int[][] dp = new int[d.length][sum + 1];
        for (int i = 0; i < dp.length; i++) {
            for (int j = 0; j <= sum; j++) {
                dp[i][j] = -1;
            }
        }
        // 经过0~i的怪兽,花钱数一定为p[0],达到武力值d[0]的地步。其他第0行的状态一律是无效的
        dp[0][p[0]] = d[0];
        for (int i = 1; i < d.length; i++) {
            for (int j = 0; j <= sum; j++) {
                // 可能性一,为当前怪兽花钱
                // 存在条件:
                // j - p[i]要不越界,并且在钱数为j - p[i]时,要能通过0~i-1的怪兽,并且钱数组合是有效的。
                if (j >= p[i] && dp[i - 1][j - p[i]] != -1) {
                    dp[i][j] = dp[i - 1][j - p[i]] + d[i];
                }
                // 可能性二,不为当前怪兽花钱
                // 存在条件:
                // 0~i-1怪兽在花钱为j的情况下,能保证通过当前i位置的怪兽
                if (dp[i - 1][j] >= d[i]) {
                    // 两种可能性中,选武力值最大的
                    dp[i][j] = Math.max(dp[i][j], dp[i - 1][j]);
                }
            }
        }
        int ans = 0;
        // dp表最后一行上,dp[N-1][j]代表:
        // 能经过0~N-1的怪兽,且花钱为j(花钱的严格等于j)时的武力值最大是多少?
        // 那么最后一行上,最左侧的不为-1的列数(j),就是答案
        for (int j = 0; j <= sum; j++) {
            if (dp[d.length - 1][j] != -1) {
                ans = j;
                break;
            }
        }
        return ans;
    }

可以看到二维数组的 dp 规模是钱数 * 达到的最大能力。适用于怪兽能力比较大,但是钱数不大的情况。

完整代码如下(含对数器)


public class NowCoder_BeatMonster {
    // i到最后通过所有怪兽的最少钱数是多少?
    // 适合怪兽能力不大的情况
    public static long func1(int[] hp, int[] money) {
        return p(hp, money, 0, 0);
    }

    public static long p(int[] hp, int[] money, int i, int j) {
        if (i == hp.length) {
            return 0;
        }
        // 选择贿赂
        long p = money[i] + p(hp, money, i + 1, j + hp[i]);
        // 不选贿赂,有条件
        if (j >= hp[i]) {
            return Math.min(p, p(hp, money, i + 1, j));
        }
        return p;
    }

    public static long func1Dp(int[] hp, int[] money) {
        int sum = 0;
        for (int a : hp) {
            sum += a;
        }
        long[][] dp = new long[hp.length + 1][sum + 1];
        for (int i = hp.length - 1; i >= 0; i--) {
            for (int j = sum - hp[i]; j >= 0; j--) {
                dp[i][j] = money[i] + dp[i + 1][j + hp[i]];
                if (j >= hp[i]) {
                    dp[i][j] = Math.min(dp[i][j], dp[i + 1][j]);
                }
            }
        }
        return dp[0][0];
    }

    public static long func2(int[] hp, int[] money) {
        int sum = 0;
        for (int a : money) {
            sum += a;
        }
        int N = hp.length;
        for (int i = 0; i < sum; i++) {
            if (p2(hp, money, N - 1, i) != -1) {
                return i;
            }
        }
        return sum;
    }

    // 从0....index 怪兽,花的钱,必须严格==m
    // 如果通过不了,返回-1
    // 如果可以通过,返回能通过情况下的最大能力值
    public static long p2(int[] hp, int[] money, int index, int m) {
        if (index == -1) {
            return m == 0 ? 0L : -1L;
        }
        // 贿赂当前怪兽
        long p1 = p2(hp, money, index - 1, m);
        long ans = -1;
        if (p1 != -1 && p1 >= hp[index]) {
            ans = p1;
        }
        long p2 = p2(hp, money, index - 1, m - money[index]);
        if (p2 != -1) {
            ans = Math.max(ans, p2 + hp[index]);
        }
        return ans;
    }


    public static long func4(int[] d, int[] p) {
        int sum = 0;
        for (int num : p) {
            sum += num;
        }
        // dp[i][j]含义:
        // 能经过0~i的怪兽,且花钱为j(花钱的严格等于j)时的武力值最大是多少?
        // 如果dp[i][j]==-1,表示经过0~i的怪兽,花钱为j是无法通过的,或者之前的钱怎么组合也得不到正好为j的钱数
        int[][] dp = new int[d.length][sum + 1];
        for (int i = 0; i < dp.length; i++) {
            for (int j = 0; j <= sum; j++) {
                dp[i][j] = -1;
            }
        }
        // 经过0~i的怪兽,花钱数一定为p[0],达到武力值d[0]的地步。其他第0行的状态一律是无效的
        dp[0][p[0]] = d[0];
        for (int i = 1; i < d.length; i++) {
            for (int j = 0; j <= sum; j++) {
                // 可能性一,为当前怪兽花钱
                // 存在条件:
                // j - p[i]要不越界,并且在钱数为j - p[i]时,要能通过0~i-1的怪兽,并且钱数组合是有效的。
                if (j >= p[i] && dp[i - 1][j - p[i]] != -1) {
                    dp[i][j] = dp[i - 1][j - p[i]] + d[i];
                }
                // 可能性二,不为当前怪兽花钱
                // 存在条件:
                // 0~i-1怪兽在花钱为j的情况下,能保证通过当前i位置的怪兽
                if (dp[i - 1][j] >= d[i]) {
                    // 两种可能性中,选武力值最大的
                    dp[i][j] = Math.max(dp[i][j], dp[i - 1][j]);
                }
            }
        }
        int ans = 0;
        // dp表最后一行上,dp[N-1][j]代表:
        // 能经过0~N-1的怪兽,且花钱为j(花钱的严格等于j)时的武力值最大是多少?
        // 那么最后一行上,最左侧的不为-1的列数(j),就是答案
        for (int j = 0; j <= sum; j++) {
            if (dp[d.length - 1][j] != -1) {
                ans = j;
                break;
            }
        }
        return ans;
    }

    public static int[][] generateTwoRandomArray(int len, int value) {
        int size = (int) (Math.random() * len) + 1;
        int[][] arrs = new int[2][size];
        for (int i = 0; i < size; i++) {
            arrs[0][i] = (int) (Math.random() * value) + 1;
            arrs[1][i] = (int) (Math.random() * value) + 1;
        }
        return arrs;
    }

    public static void main(String[] args) {
        int len = 12;
        int value = 20;
        int testTimes = 10000;
        for (int i = 0; i < testTimes; i++) {
            int[][] arrs = generateTwoRandomArray(len, value);
            int[] d = arrs[0];
            int[] p = arrs[1];
            long ans1 = func1(d, p);
            long ans4 = func1Dp(d, p);
            long ans2 = func2(d, p);
            long ans3 = func4(d, p);
            if (ans1 != ans2 || ans2 != ans3 || ans1 != ans4) {
                System.out.println("oops!");
            }
        }

    }

}

更多

算法和数据结构笔记

参考资料

算法和数据结构体系班-左程云

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GreyZeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值